Sample commands to create a vgg-16 eager mode model archive, register it on TorchServe and run image prediction
Run the commands given in following steps from the parent directory of the root of the repository. For example, if you cloned the repository into /home/my_path/serve, run the steps from /home/my_path/serve
wget https://download.pytorch.org/models/vgg16-397923af.pth
torch-model-archiver --model-name vgg16 --version 1.0 --model-file ./examples/image_classifier/vgg_16/model.py --serialized-file vgg16-397923af.pth --handler ./examples/image_classifier/vgg_16/vgg_handler.py --extra-files ./examples/image_classifier/index_to_name.json
mkdir model_store
mv vgg16.mar model_store/
torchserve --start --model-store model_store --models vgg16=vgg16.mar
curl http://127.0.0.1:8080/predictions/vgg16 -T ./examples/image_classifier/kitten.jpg
- Save the VGG16 model in as an executable script module or a traced script:
-
Save model using scripting
#scripted mode from torchvision import models import torch model = models.vgg16(pretrained=True) sm = torch.jit.script(model) sm.save("vgg16.pt")
-
Save model using tracing
#traced mode from torchvision import models import torch model = models.vgg16(pretrained=True) model.eval() example_input = torch.rand(1, 3, 224, 224) traced_script_module = torch.jit.trace(model, example_input) traced_script_module.save("vgg16.pt")
-
Use following commands to register vgg16 torchscript model on TorchServe and run image prediction
torch-model-archiver --model-name vgg16 --version 1.0 --serialized-file vgg16.pt --extra-files ./examples/image_classifier/index_to_name.json --handler ./examples/image_classifier/vgg_16/vgg_handler.py mkdir model_store mv vgg16.mar model_store/ torchserve --start --model-store model_store --models vgg16=vgg16.mar curl http://127.0.0.1:8080/predictions/vgg16 -T ./serve/examples/image_classifier/kitten.jpg