-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSkinSegmentation.py
96 lines (78 loc) · 3.22 KB
/
SkinSegmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import numpy as np
import cv2
import matplotlib.pyplot as plt
import os
imageNames = ['skin-test-img-1.jpg', 'skin-test-img-2.jpg', 'skin-test-img-3.jpg', 'skin-test-img-4.jpg', 'skin-test-img-5.jpg', 'skin-test-img-6.jpg']
path = 'images'
def LoadAllTestImages():
skinImages = []
for indexImage, nameImage in enumerate(imageNames):
imagePath = os.path.join(path, nameImage)
skinImages.append(cv2.imread(imagePath))
return skinImages
def ShowImages(arrayImg, title, pos):
for indexImage, image in enumerate(arrayImg):
ShowWithMatplotlib(image, title + "_" + str(indexImage + 1), pos + indexImage)
def ShowWithMatplotlib(colorImg, title, pos):
imgRGB = colorImg[:, :, ::-1]
ax = plt.subplot(5, 6, pos)
plt.imshow(imgRGB)
plt.title(title)
plt.axis('off')
lowerHsv = np.array([0, 48, 80], dtype="uint8")
upperHsv = np.array([20, 255, 255], dtype="uint8")
def SkinDetectorHsv(bgrImage):
hsvImage = cv2.cvtColor(bgrImage, cv2.COLOR_BGR2HSV)
skinRegion = cv2.inRange(hsvImage, lowerHsv, upperHsv)
return skinRegion
lowerHsv2 = np.array([0, 50, 0], dtype="uint8")
upperHsv2 = np.array([120, 150, 255], dtype="uint8")
def SkinDetectorHsv2(bgrImage):
hsvImage = cv2.cvtColor(bgrImage, cv2.COLOR_BGR2HSV)
skinRegion = cv2.inRange(hsvImage, lowerHsv2, upperHsv2)
return skinRegion
lowerYcrcb = np.array([0, 133, 77], dtype="uint8")
upperYcrcb = np.array([255, 173, 127], dtype="uint8")
def SkinDetectorYcrcb(bgrImage):
ycrcbImage = cv2.cvtColor(bgrImage, cv2.COLOR_BGR2YCR_CB)
skinRegion = cv2.inRange(ycrcbImage, lowerYcrcb, upperYcrcb)
return skinRegion
def BgrSkin(b, g, r):
e1 = bool((r > 95) and (g > 40) and (b > 20) and ((max(r, max(g, b)) - min(r, min(g, b))) > 15) and (
abs(int(r) - int(g)) > 15) and (r > g) and (r > b))
e2 = bool((r > 220) and (g > 210) and (b > 170) and (abs(int(r) - int(g)) <= 15) and (r > b) and (g > b))
return e1 or e2
def SkinDetectorBgr(bgrImage):
h = bgrImage.shape[0]
w = bgrImage.shape[1]
res = np.zeros((h, w, 1), dtype="uint8")
for y in range(0, h):
for x in range(0, w):
(b, g, r) = bgrImage[y, x]
if BgrSkin(b, g, r):
res[y, x] = 255
return res
SkinDetectors = {
'ycrcb': SkinDetectorYcrcb,
'hsv': SkinDetectorHsv,
'hsv_2': SkinDetectorHsv2,
'bgr': SkinDetectorBgr
}
def ApplySkinDetector(arrayImg, skinDetector):
skinDetectorResult = []
for indexImage, image in enumerate(arrayImg):
detectedSkin = SkinDetectors[skinDetector](image)
bgr = cv2.cvtColor(detectedSkin, cv2.COLOR_GRAY2BGR)
skinDetectorResult.append(bgr)
return skinDetectorResult
plt.figure(figsize=(15, 8))
plt.suptitle("Skin segmentation using different color spaces", fontsize=14, fontweight='bold')
for i, (k, v) in enumerate(SkinDetectors.items()):
print("index: '{}', key: '{}', value: '{}'".format(i, k, v))
testImages = LoadAllTestImages()
ShowImages(testImages, "test img", 1)
ShowImages(ApplySkinDetector(testImages, 'ycrcb'), "ycrcb", 7)
ShowImages(ApplySkinDetector(testImages, 'hsv'), "hsv", 13)
ShowImages(ApplySkinDetector(testImages, 'hsv_2'), "hsv_2", 19)
ShowImages(ApplySkinDetector(testImages, 'bgr'), "bgr", 25)
plt.show()