-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
128 lines (101 loc) · 4.71 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import torchvision
import torchvision.transforms as transforms
import numpy as np
import random
import os
import pickle
""" Dataset partitioning helper """
class Partition(object):
def __init__(self, data, index):
self.data = data
self.index = index
def __len__(self):
return len(self.index)
def __getitem__(self, index):
data_idx = self.index[index]
return self.data[data_idx]
class DataPartitioner(object):
def __init__(self, data, sizes=[0.7, 0.2, 0.1], seed=1234):
self.data = data
self.partitions = []
random.seed(seed)
data_len = len(data)
indexes = [x for x in range(0, data_len)]
random.shuffle(indexes)
for frac in sizes:
part_len = int(frac * data_len)
self.partitions.append(indexes[0:part_len])
indexes = indexes[part_len:]
def use(self, partition):
return Partition(self.data, self.partitions[partition])
class Cifar:
@staticmethod
def get_loader(batch_size, world_size, rank, root):
root = root
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
trainset = torchvision.datasets.CIFAR10(root=root, train=True, download=True, transform=transform_train)
train_sampler = torch.utils.data.distributed.DistributedSampler(trainset, world_size, rank, shuffle=True)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=False,
sampler=train_sampler)
transform_test = transforms.Compose([
transforms.ToTensor()
])
testset = torchvision.datasets.CIFAR10(root=root, train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=4)
return trainloader, testloader, train_sampler
class Cifar_EXT:
@staticmethod
def get_loader(batch_size, world_size, rank, root):
root = root
root1 = root
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
trainset = torchvision.datasets.CIFAR10(root=root, train=True, download=True, transform=transform_train)
aux_path = os.path.join(root1, 'ti_500K_pseudo_labeled.pickle')
print("Loading data from ti_500K_pseudo_labeled.pickle")
with open(aux_path, 'rb') as f:
aux = pickle.load(f)
aux_data = aux['data']
aux_targets = aux['extrapolated_targets']
orig_len = len(trainset.data)
trainset.data = np.concatenate((trainset.data, aux_data), axis=0)
trainset.targets.extend(aux_targets)
train_sampler = torch.utils.data.distributed.DistributedSampler(trainset, world_size, rank, shuffle=True)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=False,
sampler=train_sampler)
transform_test = transforms.Compose([
transforms.ToTensor(),
])
testset = torchvision.datasets.CIFAR10(root=root, train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=4)
return trainloader, testloader, train_sampler
class ImageNet:
@staticmethod
def get_loader(batch_size, world_size, rank, root):
root = root
transform_train = transforms.Compose([
transforms.Resize(256),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
trainset = torchvision.datasets.ImageFolder(root=os.path.join(root, 'train'), transform=transform_train)
train_sampler = torch.utils.data.distributed.DistributedSampler(trainset, world_size, rank, shuffle=True)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=False,
sampler=train_sampler,num_workers=32, pin_memory=True)
transform_test = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
])
testset = torchvision.datasets.ImageFolder(root=os.path.join(root, 'val'), transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, pin_memory=True)
return trainloader, testloader, train_sampler