-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsightline_analysis.py
167 lines (131 loc) · 5.62 KB
/
sightline_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env python
# coding: utf-8
####################################################
# For a single dataset, cast sightlines
# in a grid of theta & phi, radially bin together
# sightlines at constant theta, and take percentiles
####################################################
import yt
yt.funcs.mylog.setLevel(50) # disable logging
import numpy as np
import pickle
import sys
tcool_dist_mode = False
def _ram_pressure(field, data):
return data['density'] * data['radial_velocity']**2
yt.add_field(name=('gas','ram_pressure'), function=_ram_pressure, sampling_type='cell', units="dyne/cm**2")
#
# User Settings
#
n_theta = 13
phi_step = 10
bins = 51
if not tcool_dist_mode:
fields = ['entropy','cooling_time','density',
'temperature','metallicity','pressure',
'ram_pressure','cell_mass','radial_velocity']
units = ['keV*cm**2','Gyr','g*cm**-3',
'K','Zsun','dyne*cm**-2',
'dyne*cm**-2','Msun','km/s']
else:
fields = ['cell_mass']
units = ['Msun']
#
# Global Variables
#
# currently limit theta to upper hemisphere
theta = np.linspace(0, 180, n_theta, endpoint=True)
phi = np.arange(0, 360, phi_step)
n_phi = phi.size
# each row is const phi
theta_coord, phi_coord = np.meshgrid(np.deg2rad(theta), np.deg2rad(phi))
#
# Work functions
#
def process_dataset(filename):
ds = yt.load(filename)
length = ds.quan(206, 'kpc')
s = 0.5 * np.ones((3, n_phi, n_theta)) # dim 1 is const phi; dim 0 is x,y,z
starts = ds.arr(s, 'code_length')
uvec = np.array([np.sin(theta_coord)*np.cos(phi_coord),
np.sin(theta_coord)*np.sin(phi_coord),
np.cos(theta_coord)])
ends = starts + length*uvec
# each list within rays will have constant theta
rays = []
# the phi angles for i_theta==0 and i_theta==n_theta-1 are all redundant
# as these are the poles
rays.append(ds.ray(starts[:, 0, 0], ends[:, 0, 0]))
for i_theta in range(1,n_theta-1):
rays.append([])
for i_phi in range(n_phi):
rays[i_theta].append(ds.ray(starts[:, i_phi, i_theta],
ends[:, i_phi, i_theta]))
rays.append(ds.ray(starts[:, -1, -1], ends[:, -1, -1]))
if not tcool_dist_mode:
edges = np.linspace(2e-1, 206, bins)
bin_field = "radius"
bin_unit = "kpc"
else:
edges = np.linspace(1e-1, 1e2, bins)
bin_field = "cooling_time"
bin_unit = "Gyr"
centers = edges[:-1] + np.diff(edges)/2
quantity_arrays = {}
# Is this the most efficient outer loop? heck no
# It should really be the innermost loop
# But it's easy to program
for quantity_name, unit in zip(fields, units):
quantity_arrays[quantity_name] = {}
# Bin quantity of all rays with matching theta
for i_theta in range(0,n_theta):
quantities = []
# Theta = 0 or 2pi
if i_theta==0 or i_theta==n_theta-1:
ray = rays[0]
binner = np.digitize(ray[bin_field].to(bin_unit), edges)
for i in range(1, edges.size):
this_bin = binner==i
quantities.append(list(ray[quantity_name][this_bin].to(unit).value))
else:
# first ray at this theta
ray = rays[i_theta][0]
binner = np.digitize(ray[bin_field].to(bin_unit), edges)
for i in range(1, edges.size):
this_bin = binner==i
quantities.append(list(ray[quantity_name][this_bin].to(unit).value))
# subsequent rays at this theta
for ray in rays[i_theta][1:]:
binner = np.digitize(ray[bin_field].to(bin_unit), edges)
for i in range(1, edges.size):
this_bin = binner==i
quantities[i-1].extend(ray[quantity_name][this_bin].to(unit).value)
if not tcool_dist_mode:
# Process/compress bins into med, min, and max
quantity_min = np.zeros(len(quantities))
quantity_low = np.zeros(len(quantities))
quantity_med = np.zeros(len(quantities))
quantity_upp = np.zeros(len(quantities))
quantity_max = np.zeros(len(quantities))
for i in range(len(quantities)):
quantity_min[i] = np.min(quantities[i])
quantity_low[i] = np.percentile(quantities[i], 16)
quantity_med[i] = np.median(quantities[i])
quantity_upp[i] = np.percentile(quantities[i], 84)
quantity_max[i] = np.max(quantities[i])
quantity_arrays[quantity_name][i_theta] = {'min':quantity_min,
'p16':quantity_low,
'med':quantity_med,
'p84':quantity_upp,
'max':quantity_max}
else:
quantity_sum = np.zeros(len(quantities))
for i in range(len(quantities)):
quantity_sum[i] = np.sum(quantities[i])
quantity_arrays[quantity_name][i_theta] = {'sum':quantity_sum}
return quantity_arrays
if __name__=="__main__":
assert len(sys.argv) == 2
data = process_dataset(sys.argv[1])
with open(f"data_{sys.argv[1][-6:]}{'_mass' if tcool_dist_mode else ''}.pkl","wb") as f:
pickle.dump(data, f, protocol=3)