-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfine_tune.py
130 lines (93 loc) · 4.13 KB
/
fine_tune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
from transformers import OpenAIGPTLMHeadModel, AutoTokenizer
import torch
from torch.utils.data import DataLoader, Dataset
import tqdm
from utils import read_jsonl, BOS, SEP, EOS, PAD, VALID_EMOTES, IMG_TOKEN, GIF_TOKEN, LINK_TOKEN
class MimicDataset(Dataset):
def __init__(self, train_texts, tokenizer):
self.raw_strings = train_texts
self.tokenizer = tokenizer
def __len__(self):
return len(self.raw_strings)
def __getitem__(self, idx):
train_text = self.raw_strings[idx]
tokenized = self.tokenizer(train_text, return_tensors="pt", padding='max_length', max_length=512, truncation=True)
input_ids = tokenized.input_ids.squeeze()
# Leaving for reference, but official docs for fine-tuning GPT 2 use same input_ids as label
# https://huggingface.co/docs/transformers/v4.17.0/en/model_doc/openai-gpt#transformers.OpenAIGPTLMHeadModel
# labels = torch.full(input_ids.shape, self.tokenizer.pad_token_id)
# labels[:-1] = input_ids[:-1]
return {
"input_ids": input_ids,
# "labels" : labels
}
def create_tokenizer(model_string : str) -> "AutoTokenizer":
"""
Helper function to create tokenizer and add any new vocab.
Input:
- model_string: The name of the pretrained model whose tokenizer should be loaded.
"""
tokenizer = AutoTokenizer.from_pretrained(model_string)
# https://stackoverflow.com/questions/76198051/how-to-add-new-tokens-to-an-existing-huggingface-tokenizer
new_vocab = [IMG_TOKEN, GIF_TOKEN, LINK_TOKEN] + VALID_EMOTES
new_tokens = set(new_vocab) - set(tokenizer.vocab.keys())
tokenizer.add_tokens(list(new_tokens))
# We can add these special tokens to the vocabulary and the embeddings of the model:
tokenizer.add_special_tokens({
'pad_token': PAD,
'sep_token' : SEP,
'bos_token' : BOS,
'eos_token' : EOS
})
return tokenizer
def fine_tune(data_loader, model, optimizer, num_epochs, device):
"""
Fine tunes model using traditional training loop for maximum control.
Input:
- data_loader: Data loader
- model: The model to fine-tune.
- optimizer: Optimizer for training
- num_epochs : Number of epochs for training
- device: Needed for pushing vectors to GPU
Output:
- model: Fine-tuned model.
"""
model.train()
for epoch in range(num_epochs):
total_loss = 0
for batch in tqdm.tqdm(data_loader):
input_ids = batch["input_ids"].to(device)
# Forward pass with custom masks
optimizer.zero_grad()
outputs = model(input_ids, labels=input_ids)
loss = outputs.loss
total_loss += loss.item()
# Backward pass and optimization
loss.backward()
optimizer.step()
average_loss = total_loss / len(data_loader)
print(f"Epoch {epoch + 1}/{num_epochs}, Average Loss: {average_loss}")
return model
def main():
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
username = ...
model_string = "openai-gpt"
# Curate Tokenizer and Dataset.
tokenizer = create_tokenizer(model_string)
train_data = [x["train"] for x in read_jsonl(f"../messages/user_messages/{username}.jsonl")]
user_dataset = MimicDataset(train_data, tokenizer)
data_loader = DataLoader(user_dataset, batch_size=8, shuffle=True)
# Define Model
model = OpenAIGPTLMHeadModel.from_pretrained(model_string)
model.resize_token_embeddings(len(tokenizer))
model.to(device)
# Fine Tuning
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-5)
model = fine_tune(data_loader, model, optimizer, num_epochs=3, device=device)
# Saving results
model.save_pretrained(f"models/gpt/{username}/model")
tokenizer.save_pretrained(f"models/gpt/{username}/tokenizer")
return
if (__name__ == "__main__"):
main()