forked from akanazawa/cmr
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmain.py
322 lines (258 loc) · 12.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
"""
Script for the bird shape, pose and texture experiment.
The model takes imgs, outputs the deformation to the mesh & camera parameters
Loss consists of:
- keypoint reprojection loss
- mask reprojection loss
- smoothness/laplacian priors on triangles
- texture reprojection losses
example usage : python -m cmr.experiments.shape --name=bird_shape --plot_scalars --save_epoch_freq=1 --batch_size=8 --display_visuals --display_freq=2000
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
import os.path as osp
import numpy as np
import torch
import torchvision
from torch.autograd import Variable
import scipy.io as sio
from collections import OrderedDict
from data import cub as cub_data
from utils import visutil
from utils import bird_vis
from utils import image as image_utils
from nnutils import train_utils
from nnutils import loss_utils
from nnutils import mesh_net
from nnutils.nmr import NeuralRenderer
from nnutils import geom_utils
flags.DEFINE_string('dataset', 'cub', 'cub or pascal or p3d')
# Weights:
flags.DEFINE_float('kp_loss_wt', 30., 'keypoint loss weight')
flags.DEFINE_float('mask_loss_wt', 2., 'mask loss weight')
flags.DEFINE_float('cam_loss_wt', 2., 'weights to camera loss')
flags.DEFINE_float('deform_reg_wt', 10., 'reg to deformation')
flags.DEFINE_float('triangle_reg_wt', 30., 'weights to triangle smoothness prior')
flags.DEFINE_float('vert2kp_loss_wt', .16, 'reg to vertex assignment')
flags.DEFINE_float('tex_loss_wt', .5, 'weights to tex loss')
flags.DEFINE_float('tex_dt_loss_wt', .5, 'weights to tex dt loss')
flags.DEFINE_boolean('use_gtpose', True, 'if true uses gt pose for projection, but camera still gets trained.')
opts = flags.FLAGS
curr_path = osp.dirname(osp.abspath(__file__))
cache_path = osp.join(curr_path, '..', 'misc', 'cachedir')
def hook(module, grad_input, grad_output):
print(str(module),grad_input.shape,grad_input.device,grad_output.shape,grad_output.device)
return grad_input
class ShapeTrainer(train_utils.Trainer):
def define_model(self):
opts = self.opts
# ----------
# Options
# ----------
self.symmetric = opts.symmetric
anno_sfm_path = osp.join(opts.cub_cache_dir, 'sfm', 'anno_train.mat')
anno_sfm = sio.loadmat(anno_sfm_path, struct_as_record=False, squeeze_me=True)
sfm_mean_shape = (np.transpose(anno_sfm['S']), anno_sfm['conv_tri']-1)
img_size = (opts.img_size, opts.img_size)
self.model = mesh_net.MeshNet(
img_size, opts, nz_feat=opts.nz_feat, num_kps=opts.num_kps, sfm_mean_shape=sfm_mean_shape)
if opts.num_pretrain_epochs > 0:
self.load_network(self.model, 'pred', opts.num_pretrain_epochs)
self.model = self.model.cuda(device=opts.gpu_id)
# Data structures to use for triangle priors.
edges2verts = self.model.edges2verts
# B x E x 4
edges2verts = np.tile(np.expand_dims(edges2verts, 0), (opts.batch_size, 1, 1))
self.edges2verts = Variable(torch.LongTensor(edges2verts).cuda(device=opts.gpu_id), requires_grad=False)
# For renderering.
faces = self.model.faces.view(1, -1, 3)
self.faces = faces.repeat(opts.batch_size, 1, 1)
self.renderer = NeuralRenderer(opts.img_size)
self.renderer_predcam = NeuralRenderer(opts.img_size) #for camera loss via projection
# Need separate NMR for each fwd/bwd call.
if opts.texture:
self.tex_renderer = NeuralRenderer(opts.img_size)
# Only use ambient light for tex renderer
self.tex_renderer.ambient_light_only()
# For visualization
self.vis_rend = bird_vis.VisRenderer(opts.img_size, faces.data.cpu().numpy())
# import ipdb
# ipdb.set_trace()
# for k,v in self.model.named_modules():
# v.register_backward_hook(hook)
return
def init_dataset(self):
opts = self.opts
if opts.dataset == 'cub':
self.data_module = cub_data
else:
print('Unknown dataset %d!' % opts.dataset)
self.dataloader = self.data_module.data_loader(opts)
self.resnet_transform = torchvision.transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
def define_criterion(self):
self.projection_loss = loss_utils.kp_l2_loss
self.mask_loss_fn = torch.nn.MSELoss()
self.entropy_loss = loss_utils.entropy_loss
self.deform_reg_fn = loss_utils.deform_l2reg
self.camera_loss = loss_utils.camera_loss
self.triangle_loss_fn = loss_utils.LaplacianLoss(self.faces)
if self.opts.texture:
self.texture_loss = loss_utils.PerceptualTextureLoss()
self.texture_dt_loss_fn = loss_utils.texture_dt_loss
def set_input(self, batch):
opts = self.opts
# Image with annotations.
input_img_tensor = batch['img'].type(torch.FloatTensor)
for b in range(input_img_tensor.size(0)):
input_img_tensor[b] = self.resnet_transform(input_img_tensor[b])
img_tensor = batch['img'].type(torch.FloatTensor)
mask_tensor = batch['mask'].type(torch.FloatTensor)
kp_tensor = batch['kp'].type(torch.FloatTensor)
cam_tensor = batch['sfm_pose'].type(torch.FloatTensor)
self.input_imgs = Variable(
input_img_tensor.cuda(device=opts.gpu_id), requires_grad=False)
self.imgs = Variable(
img_tensor.cuda(device=opts.gpu_id), requires_grad=False)
self.masks = Variable(
mask_tensor.cuda(device=opts.gpu_id), requires_grad=False)
self.kps = Variable(
kp_tensor.cuda(device=opts.gpu_id), requires_grad=False)
self.cams = Variable(
cam_tensor.cuda(device=opts.gpu_id), requires_grad=False)
# Compute barrier distance transform.
mask_dts = np.stack([image_utils.compute_dt_barrier(m) for m in batch['mask']])
dt_tensor = torch.FloatTensor(mask_dts).cuda(device=opts.gpu_id)
# B x 1 x N x N
self.dts_barrier = Variable(dt_tensor, requires_grad=False).unsqueeze(1)
def forward(self):
opts = self.opts
if opts.texture:
pred_codes, self.textures = self.model(self.input_imgs)
else:
pred_codes = self.model(self.input_imgs)
self.delta_v, scale, trans, quat = pred_codes
self.cam_pred = torch.cat([scale, trans, quat], 1)
if opts.only_mean_sym:
del_v = self.delta_v
else:
del_v = self.model.symmetrize(self.delta_v)
# Deform mean shape:
self.mean_shape = self.model.get_mean_shape()
self.pred_v = self.mean_shape + del_v
# Compute keypoints.
self.vert2kp = torch.nn.functional.softmax(self.model.vert2kp, dim=1)
self.kp_verts = torch.matmul(self.vert2kp, self.pred_v)
# Decide which camera to use for projection.
if opts.use_gtpose:
proj_cam = self.cams
else:
proj_cam = self.cam_pred
# Project keypoints
self.kp_pred = self.renderer.project_points(self.kp_verts, proj_cam)
# Render mask.
self.mask_pred = self.renderer(self.pred_v, self.faces, proj_cam)
if opts.texture:
self.texture_flow = self.textures
self.textures = geom_utils.sample_textures(self.texture_flow, self.imgs)
tex_size = self.textures.size(2)
self.textures = self.textures.unsqueeze(4).repeat(1, 1, 1, 1, tex_size, 1)
self.texture_pred = self.tex_renderer(self.pred_v.detach(), self.faces, proj_cam.detach(), textures=self.textures)
else:
self.textures = None
# Compute losses for this instance.
self.kp_loss = self.projection_loss(self.kp_pred, self.kps)
self.mask_loss = self.mask_loss_fn(self.mask_pred, self.masks)
self.cam_loss = self.camera_loss(self.cam_pred, self.cams, 0)
if opts.texture:
self.tex_loss = self.texture_loss(self.texture_pred, self.imgs, self.mask_pred, self.masks)
self.tex_dt_loss = self.texture_dt_loss_fn(self.texture_flow, self.dts_barrier)
# Priors:
self.vert2kp_loss = self.entropy_loss(self.vert2kp)
self.deform_reg = self.deform_reg_fn(self.delta_v)
self.triangle_loss = self.triangle_loss_fn(self.pred_v)
# Finally sum up the loss.
# Instance loss:
self.total_loss = opts.kp_loss_wt * self.kp_loss
self.total_loss += opts.mask_loss_wt * self.mask_loss
self.total_loss += opts.cam_loss_wt * self.cam_loss
if opts.texture:
self.total_loss += opts.tex_loss_wt * self.tex_loss
# Priors:
self.total_loss += opts.vert2kp_loss_wt * self.vert2kp_loss
self.total_loss += opts.deform_reg_wt * self.deform_reg
self.total_loss += opts.triangle_reg_wt * self.triangle_loss
self.total_loss += opts.tex_dt_loss_wt * self.tex_dt_loss
def get_current_visuals(self):
vis_dict = {}
mask_concat = torch.cat([self.masks, self.mask_pred], 2)
if self.opts.texture:
# B x 2 x H x W
uv_flows = self.model.texture_predictor.uvimage_pred
# B x H x W x 2
uv_flows = uv_flows.permute(0, 2, 3, 1)
uv_images = torch.nn.functional.grid_sample(self.imgs, uv_flows,align_corners=True)
num_show = min(2, self.opts.batch_size)
show_uv_imgs = []
show_uv_flows = []
for i in range(num_show):
input_img = bird_vis.kp2im(self.kps[i].data, self.imgs[i].data)
pred_kp_img = bird_vis.kp2im(self.kp_pred[i].data, self.imgs[i].data)
masks = bird_vis.tensor2mask(mask_concat[i].data)
if self.opts.texture:
texture_here = self.textures[i]
else:
texture_here = None
rend_predcam = self.vis_rend(self.pred_v[i], self.cam_pred[i], texture=texture_here)
# Render from front & back:
rend_frontal = self.vis_rend.diff_vp(self.pred_v[i], self.cam_pred[i], texture=texture_here, kp_verts=self.kp_verts[i])
rend_top = self.vis_rend.diff_vp(self.pred_v[i], self.cam_pred[i], axis=[0, 1, 0], texture=texture_here, kp_verts=self.kp_verts[i])
diff_rends = np.hstack((rend_frontal, rend_top))
if self.opts.texture:
uv_img = bird_vis.tensor2im(uv_images[i].data)
show_uv_imgs.append(uv_img)
uv_flow = bird_vis.visflow(uv_flows[i].data)
show_uv_flows.append(uv_flow)
tex_img = bird_vis.tensor2im(self.texture_pred[i].data)
imgs = np.hstack((input_img, pred_kp_img, tex_img))
else:
imgs = np.hstack((input_img, pred_kp_img))
rend_gtcam = self.vis_rend(self.pred_v[i], self.cams[i], texture=texture_here)
rends = np.hstack((diff_rends, rend_predcam, rend_gtcam))
vis_dict['%d' % i] = np.hstack((imgs, rends, masks))
vis_dict['masked_img %d' % i] = bird_vis.tensor2im((self.imgs[i] * self.masks[i]).data)
if self.opts.texture:
vis_dict['uv_images'] = np.hstack(show_uv_imgs)
vis_dict['uv_flow_vis'] = np.hstack(show_uv_flows)
return vis_dict
def get_current_points(self):
return {
'mean_shape': visutil.tensor2verts(self.mean_shape.data),
'verts': visutil.tensor2verts(self.pred_v.data),
}
def get_current_scalars(self):
sc_dict = OrderedDict([
('smoothed_total_loss', self.smoothed_total_loss),
('total_loss', self.total_loss.item()),
('kp_loss', self.kp_loss.item()),
('mask_loss', self.mask_loss.item()),
('vert2kp_loss', self.vert2kp_loss.item()),
('deform_reg', self.deform_reg.item()),
('tri_loss', self.triangle_loss.item()),
('cam_loss', self.cam_loss.item()),
])
if self.opts.texture:
sc_dict['tex_loss'] = self.tex_loss.item()
sc_dict['tex_dt_loss'] = self.tex_dt_loss.item()
return sc_dict
def main(_):
torch.manual_seed(0)
trainer = ShapeTrainer(opts)
trainer.init_training()
trainer.train()
if __name__ == '__main__':
app.run(main)