-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathgenerate.py
65 lines (58 loc) · 2.24 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import argparse
import os
import json
import torch
import numpy as np
import soundfile as sf
from univoc.model import Vocoder
if __name__ == "__main__":
# parser = argparse.ArgumentParser()
# parser.add_argument("--checkpoint", type=str, help="Checkpoint path to resume")
# parser.add_argument("--data-dir", type=str, default="./data")
# parser.add_argument("--gen-dir", type=str, default="./generated")
# parser.add_argument("--wav-path", type=str)
# args = parser.parse_args()
# with open("config.json") as f:
# params = json.load(f)
# os.makedirs(args.gen_dir, exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Vocoder(
n_mels=80,
conditioning_size=128,
embedding_dim=256,
rnn_size=896,
fc_size=1024,
bits=10,
hop_length=200,
).cuda()
model.to(device)
model.eval()
# print("Load checkpoint from: {}:".format(args.checkpoint))
checkpoint = torch.load(
"vocoder/model.ckpt-50000.pt", map_location=lambda storage, loc: storage
)
model.load_state_dict(checkpoint["model"])
model_step = checkpoint["step"]
# wav = load_wav(args.wav_path, params["preprocessing"]["sample_rate"])
# utterance_id = os.path.basename(args.wav_path).split(".")[0]
# wav = wav / np.abs(wav).max() * 0.999
# mel = melspectrogram(
# wav,
# sample_rate=params["preprocessing"]["sample_rate"],
# preemph=params["preprocessing"]["preemph"],
# num_mels=params["preprocessing"]["num_mels"],
# num_fft=params["preprocessing"]["num_fft"],
# min_level_db=params["preprocessing"]["min_level_db"],
# hop_length=params["preprocessing"]["hop_length"],
# win_length=params["preprocessing"]["win_length"],
# fmin=params["preprocessing"]["fmin"],
# )
mel = np.load("datasets/train/p232/p232_002.mel.npy")
mel = torch.FloatTensor(mel.T).unsqueeze(0).to(device)
with torch.no_grad():
wav = model.generate(mel)
sf.write("test.wav", wav, 16000)
path = os.path.join(
args.gen_dir, "gen_{}_model_steps_{}.wav".format(utterance_id, model_step)
)
save_wav(path, output, params["preprocessing"]["sample_rate"])