-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchris_man_reramSweep.c
executable file
·654 lines (524 loc) · 21.8 KB
/
chris_man_reramSweep.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
/* USRLIB MODULE INFORMATION
MODULE NAME: chris_man_reramSweep
MODULE RETURN TYPE: int
NUMBER OF PARMS: 25
ARGUMENTS:
riseTime, double, Input, 1e-4, 20e-9,
widthTime, double, Input, 1e-6, 20e-9,
delayTime, double, Input, 1e-4, 20e-9,
complianceCH, int, Input, 2, 1, 2
resetV, double, Input, -2.5, -20, 20
setV, double, Input, 2.5, -20, 20
Irange, double, Input, 1e-2, 0.0, 1
resetIcomp, double, Input, 0.0, -0.1, 0.1
setIcomp, double, Input, 1e-3, -0.1, 0.1
resTestV, double, Input, 2, -10, 10
takeRmeas, int, Input, 1, 0, 1
useSmu, int, Input, 0, 0, 1
numIter, double, Input, 1, 1,
Vforce, D_ARRAY_T, Output, , ,
Vforce_size, int, Input, 1000, 10, 10000
Imeas, D_ARRAY_T, Output, , ,
Imeas_size, int, Input, 1000, 10, 10000
Time, D_ARRAY_T, Output, , ,
Time_size, int, Input, 1000, 10, 10000
pts, int *, Output, , ,
resetResistance, double *, Output, , ,
setResistance, double *, Output, , ,
initResistance, double *, Output, , ,
loopNum, int, Input, 1, 1,
stepIncrement, double, Input, 0, -1, 1
INCLUDES:
#include "keithley.h"
#include "nvm.h"
END USRLIB MODULE INFORMATION
*/
/* USRLIB MODULE HELP DESCRIPTION
DESCRIPTION:
------------
The chris_man_reramSweep sweep is used to perform a double sweep with a flat section at the peak of each sweep.To test a reram device, choose appropriate values for the two peaks, either positive or negative, and then set the timing you would like to implement.
Note: In the test it is assumed that RPM1 is linked with SMU1 and RPM2 is linked with SMU2. It is assumed that RPM1 (Channel 1) is connected to the side of the dut with higher capacitance, such as chuck, substrate, which is usually a *lower/bottom side*. RPM2 (Channel 2) should be connected on the opposite side, which is usually its *top side* to minimize parasitic current transients. Channel 2 forces 0 V and is used to measure current. If useSmu = 1, SMU1 and SMU2 are used for force voltage and measure current. If useSmu = 0, pulse force/measurement is performed with PMU. Voltage bias polarities should be applied, as if bias is applied from the top to simulate standard SMU/DC testing. Polarities of the forced bias and measured current inverted in the code if you are using the PMU instead of SMU (useSmu = 0).
INPUTS:
-------
riseTime (double) The time it takes for voltage to ramp to the final value. This only applies if using PMU (useSmu = 0) if using SMU there is a fixed ramp rate. Rise time should be longer than 5% of the widthTime.
widthTime (double) The time to wait at the top of the pulse at full voltage
delayTime (double) This is the delay time at the before and after each set or reset pulse. The time between a set and reset pulse will therefore be double this time.. This only applies when the PMU is being used instead of the SMU (useSmu = 0)
complianceCH (integer) On which SMU channel to enforce current compliance.
resetV (double) The peak voltage of the reset pulse. For ReRAM devices, this value should be negative
setV (double) The peak voltage of the set pulse. For ReRAM devices, this value should be positive
Irange (double) The range at which to measure current.
resetIcomp (double) Current compliance value to enforce during the reset pulse.
Please note that this variable is used both for PMU and SMU control during RESET. If it is set to 0, than no current limit is applied. If useSmu = 1, and sweep is performed with SMU, and current limit is 0, autorange is used. With current limit not zero and useSmu = 1, SMU is set in the fixed current range.
setIcomp (double) Current compliance value to enforce during the set pulse.
Please note that this variable is used both for PMU and SMU control during SET. If it is set to 0, than no current limit is applied. If useSmu = 1, and sweep is performed with SMU, and current limit is 0, autorange is used. With current limit not zero and useSmu = 1, SMU is set in the fixed current range.
Polarities for PMU compliances are selected, based on the a) inversion of the voltage on low side b) polarity of the intended voltage (setV and resetV - are biases of top/PRM2 to the bottom/RPM1), and c) used channel (2 or 1).
resTestV (double) The voltage at which to measure the resistance of the DUT. This should be much less than the set and reset voltages as to not set or reset the DUT.
takeRmeas (integer) Whether or not to take resistance measurements. 1 means yes, take resistance measurements, while 0 means no, do not take resistance measurements.
useSmu (integer) Whether or not to use a SMU to take DC measurements instead of using the PMU for pulsing measurements. A 1 means yes, use the SMU and a 0 means no, don't use the SMU, use the PMU.
numIter (integer) When in pulse mode, number of pulses to perform total. For instance, a value of 5 would execute 4 pulses without measuring resistance. Then on the fifth pulse, resistance measurements would be taken. A value on 1 simply executes the sweep once.
Vforce_size (Integer)
Imeas_size (Integer)
Time_size (Integer) These three values should be the same and represent the number of items in the output arrays.
OUTPUTS:
--------
Vforce (double) Array of forced voltages
Imeas (double) Array of measured currents
Time (double) Array of measured times
resetResistance (double) Resistance of DUT after the reset pulse
setResistance (double) Resistance of DUT after the set pulse
initResistance (double) Resistance of DUT before any pulse
Function returns error status, where:
1 : success [TEST_SUCCESS]
-10 : cannot initialize nvm structure, [NVM_INITIALIZE_ERROR]
-20 : array sizes are not the same [ARRAY_SIZES_DIFFERENT]
-30 : array size is too small, < 10, [ARRAY_SIZE_ERROR]
-200 : invalid number of points returned, [NUMBER_OF_POINTS_ERROR]
-210 : main, pulse_test function failed, [PULSE_TEST_FAILED]
-240 : used rate is less than minimum allowed, [MIN_RATE_ERROR]
-250 : dcSweep failed, [DC_SWEEP_FAILED]
-260 : riseTime is shorter than 5% of the width time [RISE_WIDTH_ERROR]
END USRLIB MODULE HELP DESCRIPTION */
/* USRLIB MODULE PARAMETER LIST */
#include "keithley.h"
#include "nvm.h"
int chris_man_reramSweep( double riseTime, double widthTime, double delayTime, int complianceCH, double resetV, double setV, double Irange, double resetIcomp, double setIcomp, double resTestV, int takeRmeas, int useSmu, double numIter, double *Vforce, int Vforce_size, double *Imeas, int Imeas_size, double *Time, int Time_size, int *pts, double *resetResistance, double *setResistance, double *initResistance, int loopNum, double stepIncrement )
{
/* USRLIB MODULE CODE */
int stat;
double time_offset=0; // offset to be added to each element of timearr
//we add desc in comments
resetV *= -1.0;
setV *= -1.0;
int measCH = 2;
double initResetV = resetV;
double initSetV = setV;
for(int p = 0;p<loopNum;p++){
char mod[] = "chris_man_reramSweep";
stat = -1;
int j;
double resetDVForce[MAX_OUT_PTS];
double setDVForce[MAX_OUT_PTS];
double resetIMeas[MAX_OUT_PTS];
double setIMeas[MAX_OUT_PTS];
double timeArr[MAX_OUT_PTS];
double timeArr2[MAX_OUT_PTS];
double voffset;
double ioffset;
double initr;
double resetr;
double setr;
double ttime;
int numsetpts;
int numresetpts;
double toffset, dt;
double reset_sign, set_sign;
//Setup NVM structures
NVMS *nvm;
pmu *pmu1;
pmuch *ch1, *ch2;
seg *seg1, *seg2;
int maxpts = MAX_OUT_PTS, max_rate;
if(resetV > 0)
reset_sign = 1.0;
else
reset_sign = -1.0;
if(setV > 0)
set_sign = 1.0;
else
set_sign = -1.0;
//set increment
resetV = initResetV - (2*p)* stepIncrement;
setV = initSetV - (2*p+1)* stepIncrement;
//initialization:
*resetResistance = 0.0;
*setResistance = 0.0;
*initResistance = 0.0;
if(riseTime/widthTime < 0.05)
{
nlog("%s: Rise time (%g) is too short relative to the width (%g) !\n",
mod, riseTime, widthTime);
stat = RISE_WIDTH_ERROR;
goto RETURN;
}
//Check if output arrays are the same size
if(Vforce_size != Imeas_size || Vforce_size != Time_size)
{
nlog("%s: Make sizes of all output arrays equal!\n", mod);
stat = ARRAY_SIZES_DIFFERENT;
goto RETURN;
}
//Reset max points according to output array sizes
//NOTE: max points are only half of the size of the array
if(maxpts > (Vforce_size/2)) maxpts = Vforce_size/2;
//make sure miniminum width is 20 ns
if(widthTime < 2e-8) widthTime = 2e-8;
//Check if output arrays are too small
if(Vforce_size < 10)
{
nlog("%s: Make sizes of all output arrays at least 20 or more!\n", mod);
stat = ARRAY_SIZE_ERROR;
goto RETURN;
}
//-----------Completely branch off if we are doing more than one loop ---------------------------
if(numIter > 1)
{
if(useSmu==0)
{
//Initialize NVM using 1 PMU
nvm = initNVMST(1);
nvm->init = 0;
//Check if initialization is successful
if(NULL == nvm)
{
nlog("%s: Cannot initialize NVM structure!\n", mod);
stat = NVM_INITIALIZE_ERROR; goto RETURN;
}
nlog("%s: starts\n", mod);
//Find PMU
pmu1 = getPMU(1);
//Find Channels 1 and 2
ch1 = getCH(pmu1,1);//ch1
ch2 = getCH(pmu1,2);//ch2
//Set measurement mode for both channels
ch1->mode = PULSE_MEAS_NONE;
ch2->mode = PULSE_MEAS_NONE;
ch1->irange = Irange;
ch2->irange = Irange;
ch1->vrange = 10.0;
ch2->vrange = 10.0;
//Initialize segments
seg1 = initSEGS(ch1,10); //ch1 8 segments
seg2 = initSEGS(ch2,10); //ch2 8 segments
if(fabs(resetIcomp) > 0)
{
if(complianceCH == 1)
ch1->ilimit = reset_sign * fabs(resetIcomp);
if(complianceCH == 2)
ch2->ilimit = reset_sign * (-1.0) * fabs(resetIcomp);
}
//overwrite by set compliance if not ZERO
if(fabs(setIcomp) > 0)
{
if(complianceCH == 1)
ch1->ilimit = set_sign * fabs (setIcomp);
if(complianceCH == 2)
ch2->ilimit = set_sign * (-1.0) * fabs (setIcomp);
}
/*~~~~~~Beginning of Setup for Ch1 Segments~~~~~~*/
seg1[0].segtime = delayTime;
seg1[1].segtime = riseTime;
seg1[1].stopv = resetV;
seg1[2].segtime = widthTime;
seg1[2].stopv = resetV;
seg1[3].segtime = riseTime;
seg1[4].segtime = delayTime;
seg1[5].segtime = delayTime;
seg1[6].segtime = riseTime;
seg1[6].stopv = setV;
seg1[7].segtime = widthTime;
seg1[7].stopv = setV;
seg1[8].segtime = riseTime;
seg1[9].segtime = delayTime;
/*~~~~~~End of Setup for Ch1 Segments~~~~~~*/
//Set the total time and maximum rate
ttime = getTotalTime(seg1, 20);
nvm->total_time = ttime;
//max_rate = calc_rate (ttime, maxpts);
//pmu1->rate = max_rate;
//Setup Ch2 segment
copyTime(seg1, seg2, 20);
nlog("%s: total time:%g\n", mod, nvm->total_time);
nlog("%s: init: %g\n", mod, nvm->init);
pmu1->loops = numIter-1;
// DO THE TEST
stat = pulse_test();
if(0 > stat){stat = PULSE_TEST_FAILED; goto RETURN;};
devint();
}
else //do PULSE sweep //if(useSmu==1)
{
j = 0;
//while(j++ <= numIter -1)//PR47385
while(j++ <= numIter - 2)
{
//running Reset
stat = dcSweep("SMU1", "SMU2",
complianceCH, measCH,
Irange, resetIcomp,
0.002, widthTime,
(-1.0)*resetV, (Vforce_size/2),
resetDVForce, (Vforce_size/2),
resetIMeas, (Vforce_size/2),
timeArr, (Vforce_size/2));
if(stat < 0)
{
nlog("%s: error in dcSweep:%d\n", mod, stat);
stat = DC_SWEEP_FAILED;
goto RETURN;
}
//runnig set
stat = dcSweep("SMU1", "SMU2",
complianceCH, measCH,
Irange, setIcomp,
0.002, widthTime,
(-1.0)*setV, (Vforce_size/2),
setDVForce, (Vforce_size/2),
setIMeas, (Vforce_size/2),
timeArr2, (Vforce_size/2));
if(stat < 0)
{
nlog("%s: error in dcSweep:%d\n", mod, stat);
stat = DC_SWEEP_FAILED;
goto RETURN;
}
}
}
}
//----------------------------------------MEASURE PART-------------------------------------------
// Get an initial Resistance measurement
if(takeRmeas == 1)
{
stat = getRes2( "SMU2", "SMU1", resTestV, &initr );
*initResistance = initr;
PostDataDouble("initResistance", initr);
}
if(useSmu==0)
{
//Initialize NVM using 1 PMU
nvm = initNVMST(1);
nvm->init = 0;
//Check if initialization is successful
if(NULL == nvm)
{
nlog("%s: Cannot initialize NVM structure!\n", mod);
stat = NVM_INITIALIZE_ERROR; goto RETURN;
}
nlog("%s: starts\n", mod);
//Find PMU
pmu1 = getPMU(1);
//Find Channels 1 and 2
ch1 = getCH(pmu1,1);//ch1
ch2 = getCH(pmu1,2);//ch2
//Set measurement mode for both channels
ch1->mode = PULSE_MEAS_WFM_PER;
ch2->mode = PULSE_MEAS_WFM_PER;
ch1->irange = Irange;
ch2->irange = Irange;
ch1->vrange = 10.0;
ch2->vrange = 10.0;
// // DO THE TEST
//Initialize segments
seg1 = initSEGS(ch1,5); //ch1 5 segments
seg2 = initSEGS(ch2,5); //ch2 5 segments
if(fabs(resetIcomp) > 0)
{
if(complianceCH == 1)
ch1->ilimit = reset_sign * fabs(resetIcomp);
if(complianceCH == 2)
ch2->ilimit = reset_sign * (-1.0) * fabs(resetIcomp);
}
/*~~~~~~Beginning of Setup for Ch1 Segments~~~~~~*/
seg1[0].segtime = delayTime;
seg1[1].segtime = riseTime;
seg1[1].stopv = resetV;
seg1[2].segtime = widthTime;
seg1[2].stopv = resetV;
seg1[3].segtime = riseTime;
seg1[4].segtime = delayTime;
/*~~~~~~End of Setup for Ch1 Segments~~~~~~*/
//Set the total time and maximum rate
ttime = getTotalTime(seg1, 4);
nvm->total_time = ttime;
max_rate = calc_rate (ttime, maxpts);
if(max_rate < NVM_MIN_RATE)
{
nlog("%s: calculated rate (%d) is smaller than minimum allowed rate (%d)\n",
mod, max_rate, NVM_MIN_RATE);
stat = MIN_RATE_ERROR;
goto RETURN;
}
pmu1->rate = max_rate;
//Setup Ch2 segment
copyTime(seg1, seg2, 5);
nlog("%s: total time:%g\n", mod, nvm->total_time);
nlog("%s: init: %g\n", mod, nvm->init);
stat = pulse_test();
if(0 > stat){stat = PULSE_TEST_FAILED; goto RETURN;};
//Determine the number of points from pulse_test()
*pts = ch1->out_pts;
PostDataInt("pts", ch1->out_pts);
nlog("%s: number of points:%d\n", mod, ch1->out_pts);
if(*pts < 1)
{
nlog("%s: Wrong number of points! %d\n", mod, *pts);
stat = NUMBER_OF_POINTS_ERROR;
goto RETURN;
}
//Get current/voltage offsets
if(2 == measCH)
ioffset = getPulseI(ch2, 0);
else
ioffset = getPulseI(ch1, 0);
voffset = getPulseV(ch2, 0) - getPulseV(ch1, 0);
nlog("%s: Current Offset is: %g Voltage offset: %g\n", mod,
ioffset, voffset);
//Correct data with voltage/current offsets,
for(j = 0; j < ch1->out_pts; j++)
{
if(2 == measCH)
{
ch2->pulseI[j] -= ioffset;
resetIMeas[j] = ch2->pulseI[j];
}
else
{
ch1->pulseI[j] -= ioffset;
resetIMeas[j] = ch1->pulseI[j];
}
resetDVForce[j] = ch2->pulseV[j] - ch1->pulseV[j] - voffset;
// Get the time
timeArr[j] = ch1->pulseT[j];
}
numresetpts = ch1->out_pts;
devint();
}
else //do PULSE sweep //if(useSmu==1)
{
// DC option
stat = dcSweep("SMU1", "SMU2",
complianceCH, measCH,
Irange, resetIcomp,
0.002, widthTime,
(-1.0)*resetV, (Vforce_size/2),
resetDVForce, (Vforce_size/2),
resetIMeas, (Vforce_size/2),
timeArr, (Vforce_size/2));
if(stat < 0)
{
nlog("%s: error in dcSweep:%d\n", mod, stat);
stat = DC_SWEEP_FAILED;
goto RETURN;
}
numresetpts = Vforce_size/2;
// set up time array
// toffset = timeArr[Vforce_size/2-2]; // edit
// for(j = (Vforce_size/2); j<Vforce_size; j++){
// timeArr[j] = timeArr2[j-(Vforce_size/2)] + toffset;
//}
}
//Determine the resistance of the device
if(takeRmeas == 1)
{
stat = getRes2( "SMU2", "SMU1", resTestV, &resetr );
*resetResistance = resetr;
PostDataDouble("resetResistance", resetr);
}
if(useSmu==0)
{
// SET PULSE --------------------------------------------------------
// force init
nvm->init = 0;
if(fabs(setIcomp) > 0)
{
if(complianceCH == 1)
ch1->ilimit = set_sign * fabs(setIcomp);
if(complianceCH == 2)
ch2->ilimit = set_sign * (-1.0) * fabs(setIcomp);
}
//set Set Voltages
seg1[1].stopv = setV;
seg1[2].stopv = setV;
stat = pulse_test();
if(0 > stat){stat = PULSE_TEST_FAILED; goto RETURN;};
//Determine the number of points from pulse_test()
*pts = ch1->out_pts;
PostDataInt("pts", ch1->out_pts);
nlog("%s: number of points:%d\n", mod, ch1->out_pts);
if(*pts < 1)
{
nlog("%s: Wrong number of points! %d\n", mod, *pts);
stat = NUMBER_OF_POINTS_ERROR;
goto RETURN;
}
//Get current/voltage offsets
if(2 == measCH)
ioffset = getPulseI(ch2, 0);
else
ioffset = getPulseI(ch1, 0);
voffset = getPulseV(ch2, 0) - getPulseV(ch1, 0);
nlog("%s: Current Offset is: %g Voltage offset: %g\n", mod,
ioffset, voffset);
//Correct data with voltage/current offsets,
dt = ch1->pulseT[1] - ch1->pulseT[0];//one extra time step
for(j = 0; j < ch1->out_pts; j++)
{
if(2 == measCH)
{
ch2->pulseI[j] -= ioffset;
setIMeas[j] = ch2->pulseI[j];
}
else
{
ch1->pulseI[j] -= ioffset;
setIMeas[j] = ch1->pulseI[j];
}
//disable voltage offset:
//voffset = 0.0;
setDVForce[j] = ch2->pulseV[j] - ch1->pulseV[j] - voffset;
// Do time
//timeArr[j + ch1->out_pts] = ch1->pulseT[j] + timeArr[ch1->out_pts-1];
timeArr[j + ch1->out_pts] = ch1->pulseT[j] + timeArr[ch1->out_pts-1] + dt;
}
numsetpts = ch1->out_pts;
devint();
}
else//use_smu = 1
{
// DC option
stat = dcSweep("SMU1", "SMU2",
complianceCH, measCH,
Irange, setIcomp,
0.002, widthTime,
(-1.0)*setV, (Vforce_size/2),
setDVForce, (Vforce_size/2),
setIMeas, (Vforce_size/2),
timeArr2, (Vforce_size/2));
if(stat < 0)
{
nlog("%s: error in dcSweep:%d\n", mod, stat);
stat = DC_SWEEP_FAILED;
goto RETURN;
}
numsetpts = Vforce_size/2;
// set up the time array
toffset = timeArr[Vforce_size/2-2];
for(j = (Vforce_size/2); j<Vforce_size; j++){
timeArr[j] = timeArr2[j-(Vforce_size/2)] + toffset ;
}
}
if(takeRmeas == 1)
{
stat = getRes2( "SMU2", "SMU1", resTestV, &setr );
*setResistance = setr;
PostDataDouble("resetResistance", setr);
}
//Print data to the appropriate buffers
PostDataDoubleBuffer("Vforce", resetDVForce, numresetpts);
PostDataDoubleBuffer("Imeas", resetIMeas, numresetpts);
// We add time_offset to each element of array before printing.This ensues linear time results.
for(int k=0; k<numresetpts*2; ++k){
timeArr[k] += time_offset;
}
time_offset= timeArr[numresetpts*2-1] + timeArr[numresetpts*2-1] - timeArr[numresetpts*2-2];
PostDataDoubleBuffer("Time", timeArr, (numresetpts*2));
PostDataDoubleBuffer("Vforce", setDVForce, numresetpts);
PostDataDoubleBuffer("Imeas", setIMeas, numresetpts);
//Sweep Completed Successfully
stat = TEST_SUCCESS;
RETURN:
//printNVMST();
nlog("%s: exiting with status:%d\n", mod, stat);
}
return stat;
/* USRLIB MODULE END */
} /* End chris_man_reramSweep.c */