diff --git a/utils/hyperparams_opt.py b/utils/hyperparams_opt.py index dbad1a7..e2ad10a 100644 --- a/utils/hyperparams_opt.py +++ b/utils/hyperparams_opt.py @@ -159,7 +159,7 @@ def sample_ppo2_params(trial): ent_coef = trial.suggest_loguniform('ent_coef', 0.00000001, 0.1) cliprange = trial.suggest_categorical('cliprange', [0.1, 0.2, 0.3, 0.4]) noptepochs = trial.suggest_categorical('noptepochs', [1, 5, 10, 20, 30, 50]) - lam = trial.suggest_categorical('lamdba', [0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 1.0]) + lam = trial.suggest_categorical('lambda', [0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 1.0]) if n_steps < batch_size: nminibatches = 1 @@ -314,7 +314,7 @@ def sample_trpo_params(trial): timesteps_per_batch = trial.suggest_categorical('timesteps_per_batch', [16, 32, 64, 128, 256, 512, 1024, 2048, 4096]) max_kl = trial.suggest_loguniform('max_kl', 0.000001, 1) ent_coef = trial.suggest_loguniform('ent_coef', 0.00000001, 0.1) - lam = trial.suggest_categorical('lamdba', [0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 1.0]) + lam = trial.suggest_categorical('lambda', [0.8, 0.9, 0.92, 0.95, 0.98, 0.99, 1.0]) # cg_damping = trial.suggest_loguniform('cg_damping', 1e-5, 1) cg_damping = 0.1 cg_iters = trial.suggest_categorical('cg_iters', [10, 15, 20, 30])