forked from jcjohnson/torch-rnn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.lua
74 lines (63 loc) · 2.18 KB
/
eval.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
require 'torch'
require 'nn'
require 'LanguageModel'
require 'util.DataLoader'
torch.setdefaulttensortype('torch.FloatTensor')
local utils = require 'util.utils'
local cmd = torch.CmdLine()
cmd:option('-checkpoint', '')
cmd:option('-split', 'val')
cmd:option('-gpu', 0)
cmd:option('-gpu_backend', 'cuda')
cmd:option('-input_h5', '')
cmd:option('-seq_length', 0)
cmd:option('-batch_size', 0)
local opt = cmd:parse(arg)
-- Set up GPU stuff
local dtype = 'torch.FloatTensor'
if opt.gpu >= 0 and opt.gpu_backend == 'cuda' then
require 'cutorch'
require 'cunn'
cutorch.setDevice(opt.gpu + 1)
dtype = 'torch.CudaTensor'
print(string.format('Running with CUDA on GPU %d', opt.gpu))
elseif opt.gpu >= 0 and opt.gpu_backend == 'opencl' then
require 'cltorch'
require 'clnn'
cltorch.setDevice(opt.gpu + 1)
dtype = torch.Tensor():cl():type()
print(string.format('Running with OpenCL on GPU %d', opt.gpu))
else
-- Memory benchmarking is only supported in CUDA mode
print 'Running in CPU mode'
end
-- Load the checkpoint and model
local checkpoint = torch.load(opt.checkpoint)
local model = checkpoint.model
model:type(dtype)
local crit = nn.CrossEntropyCriterion():type(dtype)
if opt.input_h5 ~= '' then checkpoint.opt.input_h5 = opt.input_h5 end
if opt.seq_length > 0 then checkpoint.opt.seq_length = opt.seq_length end
if opt.batch_size > 0 then checkpoint.opt.batch_size = opt.batch_size end
if checkpoint.opt.seq_offset == nil then checkpoint.opt.seq_offset = 0 end
checkpoint.opt.shuffle_data = 0
-- Load the vocab and data
local loader = DataLoader(checkpoint.opt)
local N, T = checkpoint.opt.batch_size, checkpoint.opt.seq_length
-- Evaluate the model on the specified split
model:evaluate()
model:resetStates()
local num = loader.split_sizes[opt.split]
local loss = 0
local lossstring = ''
for i = 1, num do
print(string.format('%s batch %d / %d %s', opt.split, i, num, lossstring))
local x, y = loader:nextBatch(opt.split)
x = x:type(dtype)
y = y:type(dtype):view(N * T)
local scores = model:forward(x):view(N * T, -1)
loss = loss + crit:forward(scores, y)
lossstring = string.format('average loss = %f', loss / i)
end
loss = loss / num
print(string.format('%s loss = %f', opt.split, loss))