forked from johnsmith0031/alpaca_lora_4bit
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfinetune.py
179 lines (151 loc) · 6.01 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
llama-4b trainer with support of Stanford Alpaca-like JSON datasets (short for SAD)
Intended to use with https://github.com/johnsmith0031/alpaca_lora_4bit
SAD structure:
[
{
"instruction": "Give null hypothesis",
"input": "6 subjects were given a drug (treatment group) and an additional 6 subjects a placebo (control group).",
"output": "Drug is equivalent of placebo"
},
{
"instruction": "What does RNA stand for?",
"input": "",
"output": "RNA stands for ribonucleic acid."
}
]
"""
# Early load config to replace attn if needed
from arg_parser import get_config
ft_config = get_config()
if ft_config.flash_attention:
from monkeypatch.llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
replace_llama_attn_with_flash_attn()
import autograd_4bit
if ft_config.backend.lower() == 'triton':
autograd_4bit.switch_backend_to('triton')
else:
autograd_4bit.switch_backend_to('cuda')
import sys
import peft
import peft.tuners.lora
assert peft.tuners.lora.is_gptq_available()
import torch
import transformers
from autograd_4bit import load_llama_model_4bit_low_ram
from peft import LoraConfig, get_peft_model, get_peft_model_state_dict, PeftModel
# ! Config
import train_data
# * Show loaded parameters
if ft_config.local_rank == 0:
print(f"{ft_config}\n")
if ft_config.gradient_checkpointing:
print('Disable Dropout.')
# Load Basic Model
model, tokenizer = load_llama_model_4bit_low_ram(ft_config.llama_q4_config_dir,
ft_config.llama_q4_model,
device_map=ft_config.device_map,
groupsize=ft_config.groupsize)
# Config Lora
lora_config = LoraConfig(
r=ft_config.lora_r,
lora_alpha=ft_config.lora_alpha,
target_modules=["q_proj", "v_proj"],
lora_dropout=ft_config.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
if ft_config.lora_apply_dir is None:
model = get_peft_model(model, lora_config)
else:
device_map = ft_config.device_map
if ft_config.ddp:
device_map = {'': 0}
else:
if torch.cuda.device_count() > 1:
device_map = "auto"
else:
device_map = {'': 0}
print('Device map for lora:', device_map)
model = PeftModel.from_pretrained(model, ft_config.lora_apply_dir, device_map=device_map, torch_dtype=torch.float32)
print(ft_config.lora_apply_dir, 'loaded')
# Scales to half
print('Fitting 4bit scales and zeros to half')
for n, m in model.named_modules():
if '4bit' in str(type(m)):
if m.groupsize == -1:
m.zeros = m.zeros.half()
m.scales = m.scales.half()
# Set tokenizer
tokenizer.pad_token_id = 0
if not ft_config.skip:
# Load Data
data = None
if ft_config.ds_type == "txt" and not ft_config.skip:
#### LLaMa
data = train_data.TrainTxt(ft_config.dataset, ft_config.val_set_size, tokenizer, ft_config.cutoff_len)
elif ft_config.ds_type == "alpaca" and not ft_config.skip:
#### Stanford Alpaca-like Data
data = train_data.TrainSAD(ft_config.dataset, ft_config.val_set_size, tokenizer, ft_config.cutoff_len)
elif ft_config.ds_type == "gpt4all" and not ft_config.skip:
#### GPT4All Data
data = train_data.TrainGPT4All(ft_config.dataset, ft_config.val_set_size, tokenizer, ft_config.cutoff_len)
else:
raise NotImplementedError("ERROR: Unknown dataset format")
data.prepare_data(thd=ft_config.txt_row_thd, use_eos_token=ft_config.use_eos_token)
####
# Use gradient checkpointing
if ft_config.gradient_checkpointing:
print('Applying gradient checkpointing ...')
from gradient_checkpointing import apply_gradient_checkpointing
apply_gradient_checkpointing(model, checkpoint_ratio=ft_config.gradient_checkpointing_ratio)
# Disable Trainer's DataParallel for multigpu
if not ft_config.ddp and torch.cuda.device_count() > 1:
model.is_parallelizable = True
model.model_parallel = True
training_arguments = transformers.TrainingArguments(
per_device_train_batch_size=ft_config.mbatch_size,
gradient_accumulation_steps=ft_config.gradient_accumulation_steps,
warmup_steps=ft_config.warmup_steps,
optim="adamw_torch",
num_train_epochs=ft_config.epochs,
learning_rate=ft_config.lr,
fp16=True,
logging_steps=ft_config.logging_steps,
evaluation_strategy="no",
save_strategy="steps",
eval_steps=None,
save_steps=ft_config.save_steps,
output_dir=ft_config.lora_out_dir,
save_total_limit=ft_config.save_total_limit,
load_best_model_at_end=False,
ddp_find_unused_parameters=False if ft_config.ddp else None,
)
trainer = transformers.Trainer(
model=model,
train_dataset=data.train_data,
eval_dataset=data.val_data,
args=training_arguments,
data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
model.config.use_cache = False
# Set Model dict
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
# Set Verbose
if ft_config.verbose:
transformers.logging.set_verbosity_info()
# Run Trainer
if ft_config.resume_checkpoint:
print('Resuming from {} ...'.format(ft_config.resume_checkpoint))
trainer.train(ft_config.resume_checkpoint)
else:
trainer.train()
print('Train completed.')
# Save Model
model.save_pretrained(ft_config.lora_out_dir)
if ft_config.checkpoint:
print("Warning: Merge model + LoRA and save the whole checkpoint not implemented yet.")
print('Model Saved.')