Skip to content

Latest commit

 

History

History
160 lines (119 loc) · 5.25 KB

README.md

File metadata and controls

160 lines (119 loc) · 5.25 KB

Firebase Genkit + OpenAI

Firebase Genkit <> OpenAI Plugin

OpenAI Community Plugin for Google Firebase Genkit

Github lerna version NPM Downloads GitHub Org's stars GitHub License Static Badge
GitHub Issues or Pull Requests GitHub Issues or Pull Requests GitHub commit activity

genkitx-openai is a community plugin for using OpenAI APIs with Firebase Genkit. Built by The Fire Company. 🔥

This Genkit plugin allows to use OpenAI models through their official APIs.

Supported models

The plugin supports several OpenAI models:

  • GPT-4o, GPT-4 with all its variants (Turbo, Vision), and GPT-3.5 Turbo for text generation;
  • DALL-E 3 for image generation;
  • Text Embedding Small, Text Embedding Large, and Ada for text embedding generation;
  • Whisper for speech recognition;
  • Text-to-speech 1 and Text-to-speech 1 HD for speech synthesis.

Installation

Install the plugin in your project with your favorite package manager:

  • npm install genkitx-openai
  • yarn add genkitx-openai
  • pnpm add genkitx-openai

Usage

Basic examples

The simplest way to call the text generation model is by using the helper function generate:

// Basic usage of an LLM
const response = await generate({
  model: gpt4o, // model imported from genkitx-openai
  prompt: 'Tell me a joke.',
});

console.log(await response.text());

Multi-modal prompt

const response = await generate({
  model: gpt4o,
  prompt: [
    { text: 'What animal is in the photo?' },
    { media: { url: imageUrl } },
  ],
  config: {
    // control of the level of visual detail when processing image embeddings
    // Low detail level also decreases the token usage
    visualDetailLevel: 'low',
  },
});
console.log(await response.text());

Within a flow

// ...configure Genkit (as shown above)...

export const myFlow = defineFlow(
  {
    name: 'menuSuggestionFlow',
    inputSchema: z.string(),
    outputSchema: z.string(),
  },
  async (subject) => {
    const llmResponse = await generate({
      prompt: `Suggest an item for the menu of a ${subject} themed restaurant`,
      model: gpt4o,
    });

    return llmResponse.text();
  }
);
startFlowsServer();

Tool use

// ...configure Genkit (as shown above)...

const createReminder = defineTool(
  {
    name: 'createReminder',
    description: 'Use this to create reminders for things in the future',
    inputSchema: z.object({
      time: z
        .string()
        .describe('ISO timestamp string, e.g. 2024-04-03T12:23:00Z'),
      reminder: z.string().describe('the content of the reminder'),
    }),
    outputSchema: z.number().describe('the ID of the created reminder'),
  },
  (reminder) => Promise.resolve(3)
);

const result = generate({
  model: gpt4o,
  tools: [createReminder],
  prompt: `
  You are a reminder assistant.
  If you create a reminder, describe in text the reminder you created as a response.

  Query: I have a meeting with Anna at 3 for dinner - can you set a reminder for the time?
  `,
});

console.log(result.then((res) => res.text()));

For more detailed examples and the explanation of other functionalities, refer to the examples in the official Github repo of the plugin or in the official Genkit documentation.

Contributing

Want to contribute to the project? That's awesome! Head over to our Contribution Guidelines.

Need support?

Note

This repository depends on Google's Firebase Genkit. For issues and questions related to Genkit, please refer to instructions available in Genkit's repository.

Reach out by opening a discussion on Github Discussions.

Credits

This plugin is proudly maintained by the team at The Fire Company. 🔥

License

This project is licensed under the Apache 2.0 License.

License: Apache 2.0