-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfine_tune_sakhi.py
39 lines (32 loc) · 1.04 KB
/
fine_tune_sakhi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from transformers import GPT2LMHeadModel, GPT2Tokenizer, Trainer, TrainingArguments
from datasets import load_dataset
# Load dataset
dataset = load_dataset("json", data_files="fine_tuning_dataset.jsonl")
# Load model and tokenizer
model = GPT2LMHeadModel.from_pretrained("gpt2")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
# Tokenize data
def preprocess_data(examples):
return tokenizer(examples["prompt"], truncation=True, padding="max_length", max_length=50)
tokenized_dataset = dataset.map(preprocess_data, batched=True)
# Training arguments
training_args = TrainingArguments(
output_dir="./sakhi_finetuned",
overwrite_output_dir=True,
num_train_epochs=3,
per_device_train_batch_size=4,
save_steps=500,
save_total_limit=1,
logging_dir="./logs",
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_dataset["train"],
)
# Train
trainer.train()
model.save_pretrained("./sakhi_finetuned")
tokenizer.save_pretrained("./sakhi_finetuned")