Skip to content

Latest commit

 

History

History
376 lines (317 loc) · 36.8 KB

models_list.md

File metadata and controls

376 lines (317 loc) · 36.8 KB

简体中文 | English

PaddleX模型列表(CPU/GPU)

PaddleX 内置了多条产线,每条产线都包含了若干模块,每个模块包含若干模型,具体使用哪些模型,您可以根据下边的 benchmark 数据来选择。如您更考虑模型精度,请选择精度较高的模型,如您更考虑模型推理速度,请选择推理速度较快的模型,如您更考虑模型存储大小,请选择存储大小较小的模型。

模型名称 Top1 Acc(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
CLIP_vit_base_patch16_224 85.36 13.1957 285.493 306.5 M CLIP_vit_base_patch16_224.yaml
CLIP_vit_large_patch14_224 88.1 51.1284 1131.28 1.04 G CLIP_vit_large_patch14_224.yaml
ConvNeXt_base_224 83.84 12.8473 1513.87 313.9 M ConvNeXt_base_224.yaml
ConvNeXt_base_384 84.90 31.7607 3967.05 313.9 M ConvNeXt_base_384.yaml
ConvNeXt_large_224 84.26 26.8103 2463.56 700.7 M ConvNeXt_large_224.yaml
ConvNeXt_large_384 85.27 66.4058 6598.92 700.7 M ConvNeXt_large_384.yaml
ConvNeXt_small 83.13 9.74075 1127.6 178.0 M ConvNeXt_small.yaml
ConvNeXt_tiny 82.03 5.48923 672.559 101.4 M ConvNeXt_tiny.yaml
FasterNet-L 83.5 23.4415 - 357.1 M FasterNet-L.yaml
FasterNet-M 83.0 21.8936 - 204.6 M FasterNet-M.yaml
FasterNet-S 81.3 13.0409 - 119.3 M FasterNet-S.yaml
FasterNet-T0 71.9 12.2432 - 15.1 M FasterNet-T0.yaml
FasterNet-T1 75.9 11.3562 - 29.2 M FasterNet-T1.yaml
FasterNet-T2 79.1 10.703 - 57.4 M FasterNet-T2.yaml
MobileNetV1_x0_5 63.5 1.86754 7.48297 4.8 M MobileNetV1_x0_5.yaml
MobileNetV1_x0_25 51.4 1.83478 4.83674 1.8 M MobileNetV1_x0_25.yaml
MobileNetV1_x0_75 68.8 2.57903 10.6343 9.3 M MobileNetV1_x0_75.yaml
MobileNetV1_x1_0 71.0 2.78781 13.98 15.2 M MobileNetV1_x1_0.yaml
MobileNetV2_x0_5 65.0 4.94234 11.1629 7.1 M MobileNetV2_x0_5.yaml
MobileNetV2_x0_25 53.2 4.50856 9.40991 5.5 M MobileNetV2_x0_25.yaml
MobileNetV2_x1_0 72.2 6.12159 16.0442 12.6 M MobileNetV2_x1_0.yaml
MobileNetV2_x1_5 74.1 6.28385 22.5129 25.0 M MobileNetV2_x1_5.yaml
MobileNetV2_x2_0 75.2 6.12888 30.8612 41.2 M MobileNetV2_x2_0.yaml
MobileNetV3_large_x0_5 69.2 6.31302 14.5588 9.6 M MobileNetV3_large_x0_5.yaml
MobileNetV3_large_x0_35 64.3 5.76207 13.9041 7.5 M MobileNetV3_large_x0_35.yaml
MobileNetV3_large_x0_75 73.1 8.41737 16.9506 14.0 M MobileNetV3_large_x0_75.yaml
MobileNetV3_large_x1_0 75.3 8.64112 19.1614 19.5 M MobileNetV3_large_x1_0.yaml
MobileNetV3_large_x1_25 76.4 8.73358 22.1296 26.5 M MobileNetV3_large_x1_25.yaml
MobileNetV3_small_x0_5 59.2 5.16721 11.2688 6.8 M MobileNetV3_small_x0_5.yaml
MobileNetV3_small_x0_35 53.0 5.22053 11.0055 6.0 M MobileNetV3_small_x0_35.yaml
MobileNetV3_small_x0_75 66.0 5.39831 12.8313 8.5 M MobileNetV3_small_x0_75.yaml
MobileNetV3_small_x1_0 68.2 6.00993 12.9598 10.5 M MobileNetV3_small_x1_0.yaml
MobileNetV3_small_x1_25 70.7 6.9589 14.3995 13.0 M MobileNetV3_small_x1_25.yaml
MobileNetV4_conv_large 83.4 12.5485 51.6453 125.2 M MobileNetV4_conv_large.yaml
MobileNetV4_conv_medium 79.9 9.65509 26.6157 37.6 M MobileNetV4_conv_medium.yaml
MobileNetV4_conv_small 74.6 5.24172 11.0893 14.7 M MobileNetV4_conv_small.yaml
MobileNetV4_hybrid_large 83.8 20.0726 213.769 145.1 M MobileNetV4_hybrid_large.yaml
MobileNetV4_hybrid_medium 80.5 19.7543 62.2624 42.9 M MobileNetV4_hybrid_medium.yaml
PP-HGNet_base 85.0 14.2969 327.114 249.4 M PP-HGNet_base.yaml
PP-HGNet_small 81.51 5.50661 119.041 86.5 M PP-HGNet_small.yaml
PP-HGNet_tiny 79.83 5.22006 69.396 52.4 M PP-HGNet_tiny.yaml
PP-HGNetV2-B0 77.77 6.53694 23.352 21.4 M PP-HGNetV2-B0.yaml
PP-HGNetV2-B1 79.18 6.56034 27.3099 22.6 M PP-HGNetV2-B1.yaml
PP-HGNetV2-B2 81.74 9.60494 43.1219 39.9 M PP-HGNetV2-B2.yaml
PP-HGNetV2-B3 82.98 11.0042 55.1367 57.9 M PP-HGNetV2-B3.yaml
PP-HGNetV2-B4 83.57 9.66407 54.2462 70.4 M PP-HGNetV2-B4.yaml
PP-HGNetV2-B5 84.75 15.7091 115.926 140.8 M PP-HGNetV2-B5.yaml
PP-HGNetV2-B6 86.30 21.226 255.279 268.4 M PP-HGNetV2-B6.yaml
PP-LCNet_x0_5 63.14 3.67722 6.66857 6.7 M PP-LCNet_x0_5.yaml
PP-LCNet_x0_25 51.86 2.65341 5.81357 5.5 M PP-LCNet_x0_25.yaml
PP-LCNet_x0_35 58.09 2.7212 6.28944 5.9 M PP-LCNet_x0_35.yaml
PP-LCNet_x0_75 68.18 3.91032 8.06953 8.4 M PP-LCNet_x0_75.yaml
PP-LCNet_x1_0 71.32 3.84845 9.23735 10.5 M PP-LCNet_x1_0.yaml
PP-LCNet_x1_5 73.71 3.97666 12.3457 16.0 M PP-LCNet_x1_5.yaml
PP-LCNet_x2_0 75.18 4.07556 16.2752 23.2 M PP-LCNet_x2_0.yaml
PP-LCNet_x2_5 76.60 4.06028 21.5063 32.1 M PP-LCNet_x2_5.yaml
PP-LCNetV2_base 77.05 5.23428 19.6005 23.7 M PP-LCNetV2_base.yaml
PP-LCNetV2_large 78.51 6.78335 30.4378 37.3 M PP-LCNetV2_large.yaml
PP-LCNetV2_small 73.97 3.89762 13.0273 14.6 M PP-LCNetV2_small.yaml
ResNet18_vd 72.3 3.53048 31.3014 41.5 M ResNet18_vd.yaml
ResNet18 71.0 2.4868 27.4601 41.5 M ResNet18.yaml
ResNet34_vd 76.0 5.60675 56.0653 77.3 M ResNet34_vd.yaml
ResNet34 74.6 4.16902 51.925 77.3 M ResNet34.yaml
ResNet50_vd 79.1 10.1885 68.446 90.8 M ResNet50_vd.yaml
ResNet50 76.5 9.62383 64.8135 90.8 M ResNet50.yaml
ResNet101_vd 80.2 20.0563 124.85 158.4 M ResNet101_vd.yaml
ResNet101 77.6 19.2297 121.006 158.7 M ResNet101.yaml
ResNet152_vd 80.6 29.6439 181.678 214.3 M ResNet152_vd.yaml
ResNet152 78.3 30.0461 177.707 214.2 M ResNet152.yaml
ResNet200_vd 80.9 39.1628 235.185 266.0 M ResNet200_vd.yaml
StarNet-S1 73.6 9.895 23.0465 11.2 M StarNet-S1.yaml
StarNet-S2 74.8 7.91279 21.9571 14.3 M StarNet-S2.yaml
StarNet-S3 77.0 10.7531 30.7656 22.2 M StarNet-S3.yaml
StarNet-S4 79.0 15.2868 43.2497 28.9 M StarNet-S4.yaml
SwinTransformer_base_patch4_window7_224 83.37 16.9848 383.83 310.5 M SwinTransformer_base_patch4_window7_224.yaml
SwinTransformer_base_patch4_window12_384 84.17 37.2855 1178.63 311.4 M SwinTransformer_base_patch4_window12_384.yaml
SwinTransformer_large_patch4_window7_224 86.19 27.5498 689.729 694.8 M SwinTransformer_large_patch4_window7_224.yaml
SwinTransformer_large_patch4_window12_384 87.06 74.1768 2105.22 696.1 M SwinTransformer_large_patch4_window12_384.yaml
SwinTransformer_small_patch4_window7_224 83.21 16.3982 285.56 175.6 M SwinTransformer_small_patch4_window7_224.yaml
SwinTransformer_tiny_patch4_window7_224 81.10 8.54846 156.306 100.1 M SwinTransformer_tiny_patch4_window7_224.yaml

注:以上精度指标为 ImageNet-1k 验证集 Top1 Acc。

模型名称 mAP(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
CLIP_vit_base_patch16_448_ML 89.15 - - 325.6 M CLIP_vit_base_patch16_448_ML.yaml
PP-HGNetV2-B0_ML 80.98 - - 39.6 M PP-HGNetV2-B0_ML.yaml
PP-HGNetV2-B4_ML 87.96 - - 88.5 M PP-HGNetV2-B4_ML.yaml
PP-HGNetV2-B6_ML 91.25 - - 286.5 M PP-HGNetV2-B6_ML.yaml
PP-LCNet_x1_0_ML 77.96 - - 29.4 M PP-LCNet_x1_0_ML.yaml
ResNet50_ML 83.50 - - 108.9 M ResNet50_ML.yaml

注:以上精度指标为 COCO2017 的多标签分类任务mAP。

模型名称 mA(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
PP-LCNet_x1_0_pedestrian_attribute 92.2 3.84845 9.23735 6.7 M PP-LCNet_x1_0_pedestrian_attribute.yaml

注:以上精度指标为 PaddleX 内部自建数据集mA。

模型名称 mA(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
PP-LCNet_x1_0_vehicle_attribute 91.7 3.84845 9.23735 6.7 M PP-LCNet_x1_0_vehicle_attribute.yaml

注:以上精度指标为 VeRi 数据集 mA。

模型名称 recall@1(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
PP-ShiTuV2_rec 84.2 5.23428 19.6005 16.3 M PP-ShiTuV2_rec.yaml
PP-ShiTuV2_rec_CLIP_vit_base 88.69 13.1957 285.493 306.6 M PP-ShiTuV2_rec_CLIP_vit_base.yaml
PP-ShiTuV2_rec_CLIP_vit_large 91.03 51.1284 1131.28 1.05 G PP-ShiTuV2_rec_CLIP_vit_large.yaml

注:以上精度指标为 AliProducts recall@1。

模型名称 Top-1 Acc(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
PP-LCNet_x1_0_doc_ori 99.26 3.84845 9.23735 7.1 M PP-LCNet_x1_0_doc_ori.yaml

注:以上精度指标为 PaddleX 内部自建数据集 Top-1 Acc 。

模型名称 mAP(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
PP-ShiTuV2_det 41.5 33.7426 537.003 27.6 M PP-ShiTuV2_det.yaml

注:以上精度指标为 PaddleClas主体检测数据集 mAP(0.5:0.95)。

模型名称 mAP(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
Cascade-FasterRCNN-ResNet50-FPN 41.1 - - 245.4 M Cascade-FasterRCNN-ResNet50-FPN.yaml
Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN 45.0 - - 246.2 M Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml
CenterNet-DLA-34 37.6 - - 75.4 M CenterNet-DLA-34.yaml
CenterNet-ResNet50 38.9 - - 319.7 M CenterNet-ResNet50.yaml
DETR-R50 42.3 59.2132 5334.52 159.3 M DETR-R50.yaml
FasterRCNN-ResNet34-FPN 37.8 - - 137.5 M FasterRCNN-ResNet34-FPN.yaml
FasterRCNN-ResNet50-FPN 38.4 - - 148.1 M FasterRCNN-ResNet50-FPN.yaml
FasterRCNN-ResNet50-vd-FPN 39.5 - - 148.1 M FasterRCNN-ResNet50-vd-FPN.yaml
FasterRCNN-ResNet50-vd-SSLDv2-FPN 41.4 - - 148.1 M FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml
FasterRCNN-ResNet50 36.7 - - 120.2 M FasterRCNN-ResNet50.yaml
FasterRCNN-ResNet101-FPN 41.4 - - 216.3 M FasterRCNN-ResNet101-FPN.yaml
FasterRCNN-ResNet101 39.0 - - 188.1 M FasterRCNN-ResNet101.yaml
FasterRCNN-ResNeXt101-vd-FPN 43.4 - - 360.6 M FasterRCNN-ResNeXt101-vd-FPN.yaml
FasterRCNN-Swin-Tiny-FPN 42.6 - - 159.8 M FasterRCNN-Swin-Tiny-FPN.yaml
FCOS-ResNet50 39.6 103.367 3424.91 124.2 M FCOS-ResNet50.yaml
PicoDet-L 42.6 16.6715 169.904 20.9 M PicoDet-L.yaml
PicoDet-M 37.5 16.2311 71.7257 16.8 M PicoDet-M.yaml
PicoDet-S 29.1 14.097 37.6563 4.4 M PicoDet-S.yaml
PicoDet-XS 26.2 13.8102 48.3139 5.7M PicoDet-XS.yaml
PP-YOLOE_plus-L 52.9 33.5644 814.825 185.3 M PP-YOLOE_plus-L.yaml
PP-YOLOE_plus-M 49.8 19.843 449.261 83.2 M PP-YOLOE_plus-M.yaml
PP-YOLOE_plus-S 43.7 16.8884 223.059 28.3 M PP-YOLOE_plus-S.yaml
PP-YOLOE_plus-X 54.7 57.8995 1439.93 349.4 M PP-YOLOE_plus-X.yaml
RT-DETR-H 56.3 114.814 3933.39 435.8 M RT-DETR-H.yaml
RT-DETR-L 53.0 34.5252 1454.27 113.7 M RT-DETR-L.yaml
RT-DETR-R18 46.5 19.89 784.824 70.7 M RT-DETR-R18.yaml
RT-DETR-R50 53.1 41.9327 1625.95 149.1 M RT-DETR-R50.yaml
RT-DETR-X 54.8 61.8042 2246.64 232.9 M RT-DETR-X.yaml
YOLOv3-DarkNet53 39.1 40.1055 883.041 219.7 M YOLOv3-DarkNet53.yaml
YOLOv3-MobileNetV3 31.4 18.6692 267.214 83.8 M YOLOv3-MobileNetV3.yaml
YOLOv3-ResNet50_vd_DCN 40.6 31.6276 856.047 163.0 M YOLOv3-ResNet50_vd_DCN.yaml
YOLOX-L 50.1 185.691 1250.58 192.5 M YOLOX-L.yaml
YOLOX-M 46.9 123.324 688.071 90.0 M YOLOX-M.yaml
YOLOX-N 26.1 79.1665 155.59 3.4M YOLOX-N.yaml
YOLOX-S 40.4 184.828 474.446 32.0 M YOLOX-S.yaml
YOLOX-T 32.9 102.748 212.52 18.1 M YOLOX-T.yaml
YOLOX-X 51.8 227.361 2067.84 351.5 M YOLOX-X.yaml

注:以上精度指标为 COCO2017 验证集 mAP(0.5:0.95)。

模型名称 mAP(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
PP-YOLOE_plus_SOD-S 25.1 65.4608 324.37 77.3 M PP-YOLOE_plus_SOD-S.yaml
PP-YOLOE_plus_SOD-L 31.9 57.1448 1006.98 325.0 M PP-YOLOE_plus_SOD-L.yaml
PP-YOLOE_plus_SOD-largesize-L 42.7 458.521 11172.7 340.5 M PP-YOLOE_plus_SOD-largesize-L.yaml

注:以上精度指标为 VisDrone-DET 验证集 mAP(0.5:0.95)。

模型名称 mAP(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
PP-YOLOE-L_human 48.0 32.7754 777.691 196.1 M PP-YOLOE-L_human.yaml
PP-YOLOE-S_human 42.5 15.0118 179.317 28.8 M PP-YOLOE-S_human.yaml

注:以上精度指标为 CrowdHuman 验证集 mAP(0.5:0.95)。

模型名称 mAP(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
PP-YOLOE-L_vehicle 63.9 32.5619 775.633 196.1 M PP-YOLOE-L_vehicle.yaml
PP-YOLOE-S_vehicle 61.3 15.3787 178.441 28.8 M PP-YOLOE-S_vehicle.yaml

注:以上精度指标为 PPVehicle 验证集 mAP(0.5:0.95)。

模型名称 mAP(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
PicoDet_LCNet_x2_5_face 35.8 33.7426 537.003 27.7 M PicoDet_LCNet_x2_5_face.yaml

注:以上精度指标为 wider_face 评估集 mAP(0.5:0.95)。

模型名称 Avg(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
STFPM 96.2 - - 21.5 M STFPM.yaml

注:以上精度指标为 MVTec AD 验证集 平均异常分数。

模型名称 mloU(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
Deeplabv3_Plus-R50 80.36 61.0531 1513.58 94.9 M Deeplabv3_Plus-R50.yaml
Deeplabv3_Plus-R101 81.10 100.026 2460.71 162.5 M Deeplabv3_Plus-R101.yaml
Deeplabv3-R50 79.90 82.2631 1735.83 138.3 M Deeplabv3-R50.yaml
Deeplabv3-R101 80.85 121.492 2685.51 205.9 M Deeplabv3-R101.yaml
OCRNet_HRNet-W18 80.67 48.2335 906.385 43.1 M OCRNet_HRNet-W18.yaml
OCRNet_HRNet-W48 82.15 78.9976 2226.95 249.8 M OCRNet_HRNet-W48.yaml
PP-LiteSeg-T 73.10 7.6827 138.683 28.5 M PP-LiteSeg-T.yaml
PP-LiteSeg-B 75.25 10.9935 194.727 47.0 M PP-LiteSeg-B.yaml
SegFormer-B0 (slice) 76.73 11.1946 268.929 13.2 M SegFormer-B0.yaml
SegFormer-B1 (slice) 78.35 17.9998 403.393 48.5 M SegFormer-B1.yaml
SegFormer-B2 (slice) 81.60 48.0371 1248.52 96.9 M SegFormer-B2.yaml
SegFormer-B3 (slice) 82.47 64.341 1666.35 167.3 M SegFormer-B3.yaml
SegFormer-B4 (slice) 82.38 82.4336 1995.42 226.7 M SegFormer-B4.yaml
SegFormer-B5 (slice) 82.58 97.3717 2420.19 229.7 M SegFormer-B5.yaml

注:以上精度指标为 Cityscapes 数据集 mloU。

模型名称 mloU(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
SeaFormer_base(slice) 40.92 24.4073 397.574 30.8 M SeaFormer_base.yaml
SeaFormer_large (slice) 43.66 27.8123 550.464 49.8 M SeaFormer_large.yaml
SeaFormer_small (slice) 38.73 19.2295 358.343 14.3 M SeaFormer_small.yaml
SeaFormer_tiny (slice) 34.58 13.9496 330.132 6.1M SeaFormer_tiny.yaml

注:以上精度指标为 ADE20k 数据集, slice 表示对输入图像进行了切图操作。

模型名称 Mask AP GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
Mask-RT-DETR-H 50.6 132.693 4896.17 449.9 M Mask-RT-DETR-H.yaml
Mask-RT-DETR-L 45.7 46.5059 2575.92 113.6 M Mask-RT-DETR-L.yaml
Mask-RT-DETR-M 42.7 36.8329 - 66.6 M Mask-RT-DETR-M.yaml
Mask-RT-DETR-S 41.0 33.5007 - 51.8 M Mask-RT-DETR-S.yaml
Mask-RT-DETR-X 47.5 75.755 3358.04 237.5 M Mask-RT-DETR-X.yaml
Cascade-MaskRCNN-ResNet50-FPN 36.3 - - 254.8 M Cascade-MaskRCNN-ResNet50-FPN.yaml
Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN 39.1 - - 254.7 M Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml
MaskRCNN-ResNet50-FPN 35.6 - - 157.5 M MaskRCNN-ResNet50-FPN.yaml
MaskRCNN-ResNet50-vd-FPN 36.4 - - 157.5 M MaskRCNN-ResNet50-vd-FPN.yaml
MaskRCNN-ResNet50 32.8 - - 127.8 M MaskRCNN-ResNet50.yaml
MaskRCNN-ResNet101-FPN 36.6 - - 225.4 M MaskRCNN-ResNet101-FPN.yaml
MaskRCNN-ResNet101-vd-FPN 38.1 - - 225.1 M MaskRCNN-ResNet101-vd-FPN.yaml
MaskRCNN-ResNeXt101-vd-FPN 39.5 - - 370.0 M MaskRCNN-ResNeXt101-vd-FPN.yaml
PP-YOLOE_seg-S 32.5 - - 31.5 M PP-YOLOE_seg-S.yaml
SOLOv2 35.5 - - 179.1 M SOLOv2.yaml

注:以上精度指标为 COCO2017 验证集 Mask AP(0.5:0.95)。

模型名称 检测Hmean(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
PP-OCRv4_mobile_det 77.79 10.6923 120.177 4.2 M PP-OCRv4_mobile_det.yaml
PP-OCRv4_server_det 82.69 83.3501 2434.01 100.1M PP-OCRv4_server_det.yaml

注:以上精度指标的评估集是 PaddleOCR 自建的中文数据集,覆盖街景、网图、文档、手写多个场景,其中检测包含 500 张图片。

模型名称 检测Hmean(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
PP-OCRv4_mobile_seal_det 96.47 10.5878 131.813 4.7M PP-OCRv4_mobile_seal_det.yaml
PP-OCRv4_server_seal_det 98.21 84.341 2425.06 108.3 M PP-OCRv4_server_seal_det.yaml

注:以上精度指标的评估集是 PaddleX 自建的印章数据集,包含500印章图像。

模型名称 识别Avg Accuracy(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
PP-OCRv4_mobile_rec 78.20 7.95018 46.7868 10.6 M PP-OCRv4_mobile_rec.yaml
PP-OCRv4_server_rec 79.20 7.19439 140.179 71.2 M PP-OCRv4_server_rec.yaml

注:以上精度指标的评估集是 PaddleOCR 自建的中文数据集,覆盖街景、网图、文档、手写多个场景,其中文本识别包含 1.1w 张图片。

模型名称 识别Avg Accuracy(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
ch_SVTRv2_rec 68.81 8.36801 165.706 73.9 M ch_SVTRv2_rec.yaml

注:以上精度指标的评估集是 PaddleOCR算法模型挑战赛 - 赛题一:OCR端到端识别任务A榜。

模型名称 识别Avg Accuracy(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
ch_RepSVTR_rec 65.07 10.5047 51.5647 22.1 M ch_RepSVTR_rec.yaml

注:以上精度指标的评估集是 PaddleOCR算法模型挑战赛 - 赛题一:OCR端到端识别任务B榜。

模型名称 BLEU score normed edit distance ExpRate (%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
LaTeX_OCR_rec 0.8821 0.0823 40.01 - - 89.7 M LaTeX_OCR_rec.yaml

注:以上精度指标测量自 LaTeX-OCR公式识别测试集

模型名称 精度(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
SLANet 59.52 522.536 1845.37 6.9 M SLANet.yaml
SLANet_plus 63.69 522.536 1845.37 6.9 M SLANet_plus.yaml

注:以上精度指标测量自 PaddleX内部自建英文表格识别数据集。

模型名称 MS-SSIM (%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
UVDoc 54.40 - - 30.3 M UVDoc.yaml

注:以上精度指标测量自 PaddleX自建的图像矫正数据集。

模型名称 mAP@(0.50:0.95)(%) GPU推理耗时(ms) CPU推理耗时(ms) 模型存储大小 yaml 文件
PicoDet_layout_1x 86.8 13.036 91.2634 7.4 M PicoDet_layout_1x.yaml
PicoDet-S_layout_3cls 87.1 13.521 45.7633 4.8 M PicoDet-S_layout_3cls.yaml
PicoDet-S_layout_17cls 70.3 13.5632 46.2059 4.8 M PicoDet-S_layout_17cls.yaml
PicoDet-L_layout_3cls 89.3 15.7425 159.771 22.6 M PicoDet-L_layout_3cls.yaml
PicoDet-L_layout_17cls 79.9 17.1901 160.262 22.6 M PicoDet-L_layout_17cls.yaml
RT-DETR-H_layout_3cls 95.9 114.644 3832.62 470.1 M RT-DETR-H_layout_3cls.yaml
RT-DETR-H_layout_17cls 92.6 115.126 3827.25 470.2 M RT-DETR-H_layout_17cls.yaml

注:以上精度指标的评估集是 PaddleX 自建的版面区域检测数据集,包含 1w 张图片。

模型名称 mse mae 模型存储大小 yaml 文件
DLinear 0.382 0.394 72 K DLinear.yaml
NLinear 0.386 0.392 40 K NLinear.yaml
Nonstationary 0.600 0.515 55.5 M Nonstationary.yaml
PatchTST 0.385 0.397 2.0 M PatchTST.yaml
RLinear 0.384 0.392 40 K RLinear.yaml
TiDE 0.405 0.412 31.7 M TiDE.yaml
TimesNet 0.417 0.431 4.9 M TimesNet.yaml

注:以上精度指标测量自 ETTH1 数据集 (在测试集test.csv上的评测结果)。

模型名称 precison recall f1_score 模型存储大小 yaml 文件
AutoEncoder_ad 99.36 84.36 91.25 52 K AutoEncoder_ad.yaml
DLinear_ad 98.98 93.96 96.41 112 K DLinear_ad.yaml
Nonstationary_ad 98.55 88.95 93.51 1.8 M Nonstationary_ad.yaml
PatchTST_ad 98.78 90.70 94.57 320 K PatchTST_ad.yaml
TimesNet_ad 98.37 94.80 96.56 1.3 M TimesNet_ad.yaml

注:以上精度指标测量自 PSM 数据集。

模型名称 acc(%) 模型存储大小 yaml 文件
TimesNet_cls 87.5 792 K TimesNet_cls.yaml

注:以上精度指标测量自 UWaveGestureLibrary数据集。

注:以上所有模型 GPU 推理耗时基于 NVIDIA Tesla T4 机器,精度类型为 FP32, CPU 推理速度基于 Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz,线程数为8,精度类型为 FP32。