简体中文 | English
PaddleX 内置了多条产线,每条产线都包含了若干模块,每个模块包含若干模型,具体使用哪些模型,您可以根据下边的 benchmark 数据来选择。如您更考虑模型精度,请选择精度较高的模型,如您更考虑模型推理速度,请选择推理速度较快的模型,如您更考虑模型存储大小,请选择存储大小较小的模型。
模型名称 | Top1 Acc(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
CLIP_vit_base_patch16_224 | 85.36 | 13.1957 | 285.493 | 306.5 M | CLIP_vit_base_patch16_224.yaml |
CLIP_vit_large_patch14_224 | 88.1 | 51.1284 | 1131.28 | 1.04 G | CLIP_vit_large_patch14_224.yaml |
ConvNeXt_base_224 | 83.84 | 12.8473 | 1513.87 | 313.9 M | ConvNeXt_base_224.yaml |
ConvNeXt_base_384 | 84.90 | 31.7607 | 3967.05 | 313.9 M | ConvNeXt_base_384.yaml |
ConvNeXt_large_224 | 84.26 | 26.8103 | 2463.56 | 700.7 M | ConvNeXt_large_224.yaml |
ConvNeXt_large_384 | 85.27 | 66.4058 | 6598.92 | 700.7 M | ConvNeXt_large_384.yaml |
ConvNeXt_small | 83.13 | 9.74075 | 1127.6 | 178.0 M | ConvNeXt_small.yaml |
ConvNeXt_tiny | 82.03 | 5.48923 | 672.559 | 101.4 M | ConvNeXt_tiny.yaml |
FasterNet-L | 83.5 | 23.4415 | - | 357.1 M | FasterNet-L.yaml |
FasterNet-M | 83.0 | 21.8936 | - | 204.6 M | FasterNet-M.yaml |
FasterNet-S | 81.3 | 13.0409 | - | 119.3 M | FasterNet-S.yaml |
FasterNet-T0 | 71.9 | 12.2432 | - | 15.1 M | FasterNet-T0.yaml |
FasterNet-T1 | 75.9 | 11.3562 | - | 29.2 M | FasterNet-T1.yaml |
FasterNet-T2 | 79.1 | 10.703 | - | 57.4 M | FasterNet-T2.yaml |
MobileNetV1_x0_5 | 63.5 | 1.86754 | 7.48297 | 4.8 M | MobileNetV1_x0_5.yaml |
MobileNetV1_x0_25 | 51.4 | 1.83478 | 4.83674 | 1.8 M | MobileNetV1_x0_25.yaml |
MobileNetV1_x0_75 | 68.8 | 2.57903 | 10.6343 | 9.3 M | MobileNetV1_x0_75.yaml |
MobileNetV1_x1_0 | 71.0 | 2.78781 | 13.98 | 15.2 M | MobileNetV1_x1_0.yaml |
MobileNetV2_x0_5 | 65.0 | 4.94234 | 11.1629 | 7.1 M | MobileNetV2_x0_5.yaml |
MobileNetV2_x0_25 | 53.2 | 4.50856 | 9.40991 | 5.5 M | MobileNetV2_x0_25.yaml |
MobileNetV2_x1_0 | 72.2 | 6.12159 | 16.0442 | 12.6 M | MobileNetV2_x1_0.yaml |
MobileNetV2_x1_5 | 74.1 | 6.28385 | 22.5129 | 25.0 M | MobileNetV2_x1_5.yaml |
MobileNetV2_x2_0 | 75.2 | 6.12888 | 30.8612 | 41.2 M | MobileNetV2_x2_0.yaml |
MobileNetV3_large_x0_5 | 69.2 | 6.31302 | 14.5588 | 9.6 M | MobileNetV3_large_x0_5.yaml |
MobileNetV3_large_x0_35 | 64.3 | 5.76207 | 13.9041 | 7.5 M | MobileNetV3_large_x0_35.yaml |
MobileNetV3_large_x0_75 | 73.1 | 8.41737 | 16.9506 | 14.0 M | MobileNetV3_large_x0_75.yaml |
MobileNetV3_large_x1_0 | 75.3 | 8.64112 | 19.1614 | 19.5 M | MobileNetV3_large_x1_0.yaml |
MobileNetV3_large_x1_25 | 76.4 | 8.73358 | 22.1296 | 26.5 M | MobileNetV3_large_x1_25.yaml |
MobileNetV3_small_x0_5 | 59.2 | 5.16721 | 11.2688 | 6.8 M | MobileNetV3_small_x0_5.yaml |
MobileNetV3_small_x0_35 | 53.0 | 5.22053 | 11.0055 | 6.0 M | MobileNetV3_small_x0_35.yaml |
MobileNetV3_small_x0_75 | 66.0 | 5.39831 | 12.8313 | 8.5 M | MobileNetV3_small_x0_75.yaml |
MobileNetV3_small_x1_0 | 68.2 | 6.00993 | 12.9598 | 10.5 M | MobileNetV3_small_x1_0.yaml |
MobileNetV3_small_x1_25 | 70.7 | 6.9589 | 14.3995 | 13.0 M | MobileNetV3_small_x1_25.yaml |
MobileNetV4_conv_large | 83.4 | 12.5485 | 51.6453 | 125.2 M | MobileNetV4_conv_large.yaml |
MobileNetV4_conv_medium | 79.9 | 9.65509 | 26.6157 | 37.6 M | MobileNetV4_conv_medium.yaml |
MobileNetV4_conv_small | 74.6 | 5.24172 | 11.0893 | 14.7 M | MobileNetV4_conv_small.yaml |
MobileNetV4_hybrid_large | 83.8 | 20.0726 | 213.769 | 145.1 M | MobileNetV4_hybrid_large.yaml |
MobileNetV4_hybrid_medium | 80.5 | 19.7543 | 62.2624 | 42.9 M | MobileNetV4_hybrid_medium.yaml |
PP-HGNet_base | 85.0 | 14.2969 | 327.114 | 249.4 M | PP-HGNet_base.yaml |
PP-HGNet_small | 81.51 | 5.50661 | 119.041 | 86.5 M | PP-HGNet_small.yaml |
PP-HGNet_tiny | 79.83 | 5.22006 | 69.396 | 52.4 M | PP-HGNet_tiny.yaml |
PP-HGNetV2-B0 | 77.77 | 6.53694 | 23.352 | 21.4 M | PP-HGNetV2-B0.yaml |
PP-HGNetV2-B1 | 79.18 | 6.56034 | 27.3099 | 22.6 M | PP-HGNetV2-B1.yaml |
PP-HGNetV2-B2 | 81.74 | 9.60494 | 43.1219 | 39.9 M | PP-HGNetV2-B2.yaml |
PP-HGNetV2-B3 | 82.98 | 11.0042 | 55.1367 | 57.9 M | PP-HGNetV2-B3.yaml |
PP-HGNetV2-B4 | 83.57 | 9.66407 | 54.2462 | 70.4 M | PP-HGNetV2-B4.yaml |
PP-HGNetV2-B5 | 84.75 | 15.7091 | 115.926 | 140.8 M | PP-HGNetV2-B5.yaml |
PP-HGNetV2-B6 | 86.30 | 21.226 | 255.279 | 268.4 M | PP-HGNetV2-B6.yaml |
PP-LCNet_x0_5 | 63.14 | 3.67722 | 6.66857 | 6.7 M | PP-LCNet_x0_5.yaml |
PP-LCNet_x0_25 | 51.86 | 2.65341 | 5.81357 | 5.5 M | PP-LCNet_x0_25.yaml |
PP-LCNet_x0_35 | 58.09 | 2.7212 | 6.28944 | 5.9 M | PP-LCNet_x0_35.yaml |
PP-LCNet_x0_75 | 68.18 | 3.91032 | 8.06953 | 8.4 M | PP-LCNet_x0_75.yaml |
PP-LCNet_x1_0 | 71.32 | 3.84845 | 9.23735 | 10.5 M | PP-LCNet_x1_0.yaml |
PP-LCNet_x1_5 | 73.71 | 3.97666 | 12.3457 | 16.0 M | PP-LCNet_x1_5.yaml |
PP-LCNet_x2_0 | 75.18 | 4.07556 | 16.2752 | 23.2 M | PP-LCNet_x2_0.yaml |
PP-LCNet_x2_5 | 76.60 | 4.06028 | 21.5063 | 32.1 M | PP-LCNet_x2_5.yaml |
PP-LCNetV2_base | 77.05 | 5.23428 | 19.6005 | 23.7 M | PP-LCNetV2_base.yaml |
PP-LCNetV2_large | 78.51 | 6.78335 | 30.4378 | 37.3 M | PP-LCNetV2_large.yaml |
PP-LCNetV2_small | 73.97 | 3.89762 | 13.0273 | 14.6 M | PP-LCNetV2_small.yaml |
ResNet18_vd | 72.3 | 3.53048 | 31.3014 | 41.5 M | ResNet18_vd.yaml |
ResNet18 | 71.0 | 2.4868 | 27.4601 | 41.5 M | ResNet18.yaml |
ResNet34_vd | 76.0 | 5.60675 | 56.0653 | 77.3 M | ResNet34_vd.yaml |
ResNet34 | 74.6 | 4.16902 | 51.925 | 77.3 M | ResNet34.yaml |
ResNet50_vd | 79.1 | 10.1885 | 68.446 | 90.8 M | ResNet50_vd.yaml |
ResNet50 | 76.5 | 9.62383 | 64.8135 | 90.8 M | ResNet50.yaml |
ResNet101_vd | 80.2 | 20.0563 | 124.85 | 158.4 M | ResNet101_vd.yaml |
ResNet101 | 77.6 | 19.2297 | 121.006 | 158.7 M | ResNet101.yaml |
ResNet152_vd | 80.6 | 29.6439 | 181.678 | 214.3 M | ResNet152_vd.yaml |
ResNet152 | 78.3 | 30.0461 | 177.707 | 214.2 M | ResNet152.yaml |
ResNet200_vd | 80.9 | 39.1628 | 235.185 | 266.0 M | ResNet200_vd.yaml |
StarNet-S1 | 73.6 | 9.895 | 23.0465 | 11.2 M | StarNet-S1.yaml |
StarNet-S2 | 74.8 | 7.91279 | 21.9571 | 14.3 M | StarNet-S2.yaml |
StarNet-S3 | 77.0 | 10.7531 | 30.7656 | 22.2 M | StarNet-S3.yaml |
StarNet-S4 | 79.0 | 15.2868 | 43.2497 | 28.9 M | StarNet-S4.yaml |
SwinTransformer_base_patch4_window7_224 | 83.37 | 16.9848 | 383.83 | 310.5 M | SwinTransformer_base_patch4_window7_224.yaml |
SwinTransformer_base_patch4_window12_384 | 84.17 | 37.2855 | 1178.63 | 311.4 M | SwinTransformer_base_patch4_window12_384.yaml |
SwinTransformer_large_patch4_window7_224 | 86.19 | 27.5498 | 689.729 | 694.8 M | SwinTransformer_large_patch4_window7_224.yaml |
SwinTransformer_large_patch4_window12_384 | 87.06 | 74.1768 | 2105.22 | 696.1 M | SwinTransformer_large_patch4_window12_384.yaml |
SwinTransformer_small_patch4_window7_224 | 83.21 | 16.3982 | 285.56 | 175.6 M | SwinTransformer_small_patch4_window7_224.yaml |
SwinTransformer_tiny_patch4_window7_224 | 81.10 | 8.54846 | 156.306 | 100.1 M | SwinTransformer_tiny_patch4_window7_224.yaml |
注:以上精度指标为 ImageNet-1k 验证集 Top1 Acc。
模型名称 | mAP(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
CLIP_vit_base_patch16_448_ML | 89.15 | - | - | 325.6 M | CLIP_vit_base_patch16_448_ML.yaml |
PP-HGNetV2-B0_ML | 80.98 | - | - | 39.6 M | PP-HGNetV2-B0_ML.yaml |
PP-HGNetV2-B4_ML | 87.96 | - | - | 88.5 M | PP-HGNetV2-B4_ML.yaml |
PP-HGNetV2-B6_ML | 91.25 | - | - | 286.5 M | PP-HGNetV2-B6_ML.yaml |
PP-LCNet_x1_0_ML | 77.96 | - | - | 29.4 M | PP-LCNet_x1_0_ML.yaml |
ResNet50_ML | 83.50 | - | - | 108.9 M | ResNet50_ML.yaml |
注:以上精度指标为 COCO2017 的多标签分类任务mAP。
模型名称 | mA(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
PP-LCNet_x1_0_pedestrian_attribute | 92.2 | 3.84845 | 9.23735 | 6.7 M | PP-LCNet_x1_0_pedestrian_attribute.yaml |
注:以上精度指标为 PaddleX 内部自建数据集mA。
模型名称 | mA(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
PP-LCNet_x1_0_vehicle_attribute | 91.7 | 3.84845 | 9.23735 | 6.7 M | PP-LCNet_x1_0_vehicle_attribute.yaml |
注:以上精度指标为 VeRi 数据集 mA。
模型名称 | recall@1(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
PP-ShiTuV2_rec | 84.2 | 5.23428 | 19.6005 | 16.3 M | PP-ShiTuV2_rec.yaml |
PP-ShiTuV2_rec_CLIP_vit_base | 88.69 | 13.1957 | 285.493 | 306.6 M | PP-ShiTuV2_rec_CLIP_vit_base.yaml |
PP-ShiTuV2_rec_CLIP_vit_large | 91.03 | 51.1284 | 1131.28 | 1.05 G | PP-ShiTuV2_rec_CLIP_vit_large.yaml |
注:以上精度指标为 AliProducts recall@1。
模型名称 | Top-1 Acc(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
PP-LCNet_x1_0_doc_ori | 99.26 | 3.84845 | 9.23735 | 7.1 M | PP-LCNet_x1_0_doc_ori.yaml |
注:以上精度指标为 PaddleX 内部自建数据集 Top-1 Acc 。
模型名称 | mAP(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
PP-ShiTuV2_det | 41.5 | 33.7426 | 537.003 | 27.6 M | PP-ShiTuV2_det.yaml |
注:以上精度指标为 PaddleClas主体检测数据集 mAP(0.5:0.95)。
模型名称 | mAP(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
Cascade-FasterRCNN-ResNet50-FPN | 41.1 | - | - | 245.4 M | Cascade-FasterRCNN-ResNet50-FPN.yaml |
Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN | 45.0 | - | - | 246.2 M | Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml |
CenterNet-DLA-34 | 37.6 | - | - | 75.4 M | CenterNet-DLA-34.yaml |
CenterNet-ResNet50 | 38.9 | - | - | 319.7 M | CenterNet-ResNet50.yaml |
DETR-R50 | 42.3 | 59.2132 | 5334.52 | 159.3 M | DETR-R50.yaml |
FasterRCNN-ResNet34-FPN | 37.8 | - | - | 137.5 M | FasterRCNN-ResNet34-FPN.yaml |
FasterRCNN-ResNet50-FPN | 38.4 | - | - | 148.1 M | FasterRCNN-ResNet50-FPN.yaml |
FasterRCNN-ResNet50-vd-FPN | 39.5 | - | - | 148.1 M | FasterRCNN-ResNet50-vd-FPN.yaml |
FasterRCNN-ResNet50-vd-SSLDv2-FPN | 41.4 | - | - | 148.1 M | FasterRCNN-ResNet50-vd-SSLDv2-FPN.yaml |
FasterRCNN-ResNet50 | 36.7 | - | - | 120.2 M | FasterRCNN-ResNet50.yaml |
FasterRCNN-ResNet101-FPN | 41.4 | - | - | 216.3 M | FasterRCNN-ResNet101-FPN.yaml |
FasterRCNN-ResNet101 | 39.0 | - | - | 188.1 M | FasterRCNN-ResNet101.yaml |
FasterRCNN-ResNeXt101-vd-FPN | 43.4 | - | - | 360.6 M | FasterRCNN-ResNeXt101-vd-FPN.yaml |
FasterRCNN-Swin-Tiny-FPN | 42.6 | - | - | 159.8 M | FasterRCNN-Swin-Tiny-FPN.yaml |
FCOS-ResNet50 | 39.6 | 103.367 | 3424.91 | 124.2 M | FCOS-ResNet50.yaml |
PicoDet-L | 42.6 | 16.6715 | 169.904 | 20.9 M | PicoDet-L.yaml |
PicoDet-M | 37.5 | 16.2311 | 71.7257 | 16.8 M | PicoDet-M.yaml |
PicoDet-S | 29.1 | 14.097 | 37.6563 | 4.4 M | PicoDet-S.yaml |
PicoDet-XS | 26.2 | 13.8102 | 48.3139 | 5.7M | PicoDet-XS.yaml |
PP-YOLOE_plus-L | 52.9 | 33.5644 | 814.825 | 185.3 M | PP-YOLOE_plus-L.yaml |
PP-YOLOE_plus-M | 49.8 | 19.843 | 449.261 | 83.2 M | PP-YOLOE_plus-M.yaml |
PP-YOLOE_plus-S | 43.7 | 16.8884 | 223.059 | 28.3 M | PP-YOLOE_plus-S.yaml |
PP-YOLOE_plus-X | 54.7 | 57.8995 | 1439.93 | 349.4 M | PP-YOLOE_plus-X.yaml |
RT-DETR-H | 56.3 | 114.814 | 3933.39 | 435.8 M | RT-DETR-H.yaml |
RT-DETR-L | 53.0 | 34.5252 | 1454.27 | 113.7 M | RT-DETR-L.yaml |
RT-DETR-R18 | 46.5 | 19.89 | 784.824 | 70.7 M | RT-DETR-R18.yaml |
RT-DETR-R50 | 53.1 | 41.9327 | 1625.95 | 149.1 M | RT-DETR-R50.yaml |
RT-DETR-X | 54.8 | 61.8042 | 2246.64 | 232.9 M | RT-DETR-X.yaml |
YOLOv3-DarkNet53 | 39.1 | 40.1055 | 883.041 | 219.7 M | YOLOv3-DarkNet53.yaml |
YOLOv3-MobileNetV3 | 31.4 | 18.6692 | 267.214 | 83.8 M | YOLOv3-MobileNetV3.yaml |
YOLOv3-ResNet50_vd_DCN | 40.6 | 31.6276 | 856.047 | 163.0 M | YOLOv3-ResNet50_vd_DCN.yaml |
YOLOX-L | 50.1 | 185.691 | 1250.58 | 192.5 M | YOLOX-L.yaml |
YOLOX-M | 46.9 | 123.324 | 688.071 | 90.0 M | YOLOX-M.yaml |
YOLOX-N | 26.1 | 79.1665 | 155.59 | 3.4M | YOLOX-N.yaml |
YOLOX-S | 40.4 | 184.828 | 474.446 | 32.0 M | YOLOX-S.yaml |
YOLOX-T | 32.9 | 102.748 | 212.52 | 18.1 M | YOLOX-T.yaml |
YOLOX-X | 51.8 | 227.361 | 2067.84 | 351.5 M | YOLOX-X.yaml |
注:以上精度指标为 COCO2017 验证集 mAP(0.5:0.95)。
模型名称 | mAP(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
PP-YOLOE_plus_SOD-S | 25.1 | 65.4608 | 324.37 | 77.3 M | PP-YOLOE_plus_SOD-S.yaml |
PP-YOLOE_plus_SOD-L | 31.9 | 57.1448 | 1006.98 | 325.0 M | PP-YOLOE_plus_SOD-L.yaml |
PP-YOLOE_plus_SOD-largesize-L | 42.7 | 458.521 | 11172.7 | 340.5 M | PP-YOLOE_plus_SOD-largesize-L.yaml |
注:以上精度指标为 VisDrone-DET 验证集 mAP(0.5:0.95)。
模型名称 | mAP(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
PP-YOLOE-L_human | 48.0 | 32.7754 | 777.691 | 196.1 M | PP-YOLOE-L_human.yaml |
PP-YOLOE-S_human | 42.5 | 15.0118 | 179.317 | 28.8 M | PP-YOLOE-S_human.yaml |
注:以上精度指标为 CrowdHuman 验证集 mAP(0.5:0.95)。
模型名称 | mAP(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
PP-YOLOE-L_vehicle | 63.9 | 32.5619 | 775.633 | 196.1 M | PP-YOLOE-L_vehicle.yaml |
PP-YOLOE-S_vehicle | 61.3 | 15.3787 | 178.441 | 28.8 M | PP-YOLOE-S_vehicle.yaml |
注:以上精度指标为 PPVehicle 验证集 mAP(0.5:0.95)。
模型名称 | mAP(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
PicoDet_LCNet_x2_5_face | 35.8 | 33.7426 | 537.003 | 27.7 M | PicoDet_LCNet_x2_5_face.yaml |
注:以上精度指标为 wider_face 评估集 mAP(0.5:0.95)。
模型名称 | Avg(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
STFPM | 96.2 | - | - | 21.5 M | STFPM.yaml |
注:以上精度指标为 MVTec AD 验证集 平均异常分数。
模型名称 | mloU(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
Deeplabv3_Plus-R50 | 80.36 | 61.0531 | 1513.58 | 94.9 M | Deeplabv3_Plus-R50.yaml |
Deeplabv3_Plus-R101 | 81.10 | 100.026 | 2460.71 | 162.5 M | Deeplabv3_Plus-R101.yaml |
Deeplabv3-R50 | 79.90 | 82.2631 | 1735.83 | 138.3 M | Deeplabv3-R50.yaml |
Deeplabv3-R101 | 80.85 | 121.492 | 2685.51 | 205.9 M | Deeplabv3-R101.yaml |
OCRNet_HRNet-W18 | 80.67 | 48.2335 | 906.385 | 43.1 M | OCRNet_HRNet-W18.yaml |
OCRNet_HRNet-W48 | 82.15 | 78.9976 | 2226.95 | 249.8 M | OCRNet_HRNet-W48.yaml |
PP-LiteSeg-T | 73.10 | 7.6827 | 138.683 | 28.5 M | PP-LiteSeg-T.yaml |
PP-LiteSeg-B | 75.25 | 10.9935 | 194.727 | 47.0 M | PP-LiteSeg-B.yaml |
SegFormer-B0 (slice) | 76.73 | 11.1946 | 268.929 | 13.2 M | SegFormer-B0.yaml |
SegFormer-B1 (slice) | 78.35 | 17.9998 | 403.393 | 48.5 M | SegFormer-B1.yaml |
SegFormer-B2 (slice) | 81.60 | 48.0371 | 1248.52 | 96.9 M | SegFormer-B2.yaml |
SegFormer-B3 (slice) | 82.47 | 64.341 | 1666.35 | 167.3 M | SegFormer-B3.yaml |
SegFormer-B4 (slice) | 82.38 | 82.4336 | 1995.42 | 226.7 M | SegFormer-B4.yaml |
SegFormer-B5 (slice) | 82.58 | 97.3717 | 2420.19 | 229.7 M | SegFormer-B5.yaml |
注:以上精度指标为 Cityscapes 数据集 mloU。
模型名称 | mloU(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
SeaFormer_base(slice) | 40.92 | 24.4073 | 397.574 | 30.8 M | SeaFormer_base.yaml |
SeaFormer_large (slice) | 43.66 | 27.8123 | 550.464 | 49.8 M | SeaFormer_large.yaml |
SeaFormer_small (slice) | 38.73 | 19.2295 | 358.343 | 14.3 M | SeaFormer_small.yaml |
SeaFormer_tiny (slice) | 34.58 | 13.9496 | 330.132 | 6.1M | SeaFormer_tiny.yaml |
注:以上精度指标为 ADE20k 数据集, slice 表示对输入图像进行了切图操作。
模型名称 | Mask AP | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
Mask-RT-DETR-H | 50.6 | 132.693 | 4896.17 | 449.9 M | Mask-RT-DETR-H.yaml |
Mask-RT-DETR-L | 45.7 | 46.5059 | 2575.92 | 113.6 M | Mask-RT-DETR-L.yaml |
Mask-RT-DETR-M | 42.7 | 36.8329 | - | 66.6 M | Mask-RT-DETR-M.yaml |
Mask-RT-DETR-S | 41.0 | 33.5007 | - | 51.8 M | Mask-RT-DETR-S.yaml |
Mask-RT-DETR-X | 47.5 | 75.755 | 3358.04 | 237.5 M | Mask-RT-DETR-X.yaml |
Cascade-MaskRCNN-ResNet50-FPN | 36.3 | - | - | 254.8 M | Cascade-MaskRCNN-ResNet50-FPN.yaml |
Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN | 39.1 | - | - | 254.7 M | Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN.yaml |
MaskRCNN-ResNet50-FPN | 35.6 | - | - | 157.5 M | MaskRCNN-ResNet50-FPN.yaml |
MaskRCNN-ResNet50-vd-FPN | 36.4 | - | - | 157.5 M | MaskRCNN-ResNet50-vd-FPN.yaml |
MaskRCNN-ResNet50 | 32.8 | - | - | 127.8 M | MaskRCNN-ResNet50.yaml |
MaskRCNN-ResNet101-FPN | 36.6 | - | - | 225.4 M | MaskRCNN-ResNet101-FPN.yaml |
MaskRCNN-ResNet101-vd-FPN | 38.1 | - | - | 225.1 M | MaskRCNN-ResNet101-vd-FPN.yaml |
MaskRCNN-ResNeXt101-vd-FPN | 39.5 | - | - | 370.0 M | MaskRCNN-ResNeXt101-vd-FPN.yaml |
PP-YOLOE_seg-S | 32.5 | - | - | 31.5 M | PP-YOLOE_seg-S.yaml |
SOLOv2 | 35.5 | - | - | 179.1 M | SOLOv2.yaml |
注:以上精度指标为 COCO2017 验证集 Mask AP(0.5:0.95)。
模型名称 | 检测Hmean(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
PP-OCRv4_mobile_det | 77.79 | 10.6923 | 120.177 | 4.2 M | PP-OCRv4_mobile_det.yaml |
PP-OCRv4_server_det | 82.69 | 83.3501 | 2434.01 | 100.1M | PP-OCRv4_server_det.yaml |
注:以上精度指标的评估集是 PaddleOCR 自建的中文数据集,覆盖街景、网图、文档、手写多个场景,其中检测包含 500 张图片。
模型名称 | 检测Hmean(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
PP-OCRv4_mobile_seal_det | 96.47 | 10.5878 | 131.813 | 4.7M | PP-OCRv4_mobile_seal_det.yaml |
PP-OCRv4_server_seal_det | 98.21 | 84.341 | 2425.06 | 108.3 M | PP-OCRv4_server_seal_det.yaml |
注:以上精度指标的评估集是 PaddleX 自建的印章数据集,包含500印章图像。
模型名称 | 识别Avg Accuracy(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
PP-OCRv4_mobile_rec | 78.20 | 7.95018 | 46.7868 | 10.6 M | PP-OCRv4_mobile_rec.yaml |
PP-OCRv4_server_rec | 79.20 | 7.19439 | 140.179 | 71.2 M | PP-OCRv4_server_rec.yaml |
注:以上精度指标的评估集是 PaddleOCR 自建的中文数据集,覆盖街景、网图、文档、手写多个场景,其中文本识别包含 1.1w 张图片。
模型名称 | 识别Avg Accuracy(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
ch_SVTRv2_rec | 68.81 | 8.36801 | 165.706 | 73.9 M | ch_SVTRv2_rec.yaml |
注:以上精度指标的评估集是 PaddleOCR算法模型挑战赛 - 赛题一:OCR端到端识别任务A榜。
模型名称 | 识别Avg Accuracy(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
ch_RepSVTR_rec | 65.07 | 10.5047 | 51.5647 | 22.1 M | ch_RepSVTR_rec.yaml |
注:以上精度指标的评估集是 PaddleOCR算法模型挑战赛 - 赛题一:OCR端到端识别任务B榜。
模型名称 | BLEU score | normed edit distance | ExpRate (%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|---|---|
LaTeX_OCR_rec | 0.8821 | 0.0823 | 40.01 | - | - | 89.7 M | LaTeX_OCR_rec.yaml |
注:以上精度指标测量自 LaTeX-OCR公式识别测试集。
模型名称 | 精度(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
SLANet | 59.52 | 522.536 | 1845.37 | 6.9 M | SLANet.yaml |
SLANet_plus | 63.69 | 522.536 | 1845.37 | 6.9 M | SLANet_plus.yaml |
注:以上精度指标测量自 PaddleX内部自建英文表格识别数据集。
模型名称 | MS-SSIM (%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
UVDoc | 54.40 | - | - | 30.3 M | UVDoc.yaml |
注:以上精度指标测量自 PaddleX自建的图像矫正数据集。
模型名称 | mAP@(0.50:0.95)(%) | GPU推理耗时(ms) | CPU推理耗时(ms) | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
PicoDet_layout_1x | 86.8 | 13.036 | 91.2634 | 7.4 M | PicoDet_layout_1x.yaml |
PicoDet-S_layout_3cls | 87.1 | 13.521 | 45.7633 | 4.8 M | PicoDet-S_layout_3cls.yaml |
PicoDet-S_layout_17cls | 70.3 | 13.5632 | 46.2059 | 4.8 M | PicoDet-S_layout_17cls.yaml |
PicoDet-L_layout_3cls | 89.3 | 15.7425 | 159.771 | 22.6 M | PicoDet-L_layout_3cls.yaml |
PicoDet-L_layout_17cls | 79.9 | 17.1901 | 160.262 | 22.6 M | PicoDet-L_layout_17cls.yaml |
RT-DETR-H_layout_3cls | 95.9 | 114.644 | 3832.62 | 470.1 M | RT-DETR-H_layout_3cls.yaml |
RT-DETR-H_layout_17cls | 92.6 | 115.126 | 3827.25 | 470.2 M | RT-DETR-H_layout_17cls.yaml |
注:以上精度指标的评估集是 PaddleX 自建的版面区域检测数据集,包含 1w 张图片。
模型名称 | mse | mae | 模型存储大小 | yaml 文件 |
---|---|---|---|---|
DLinear | 0.382 | 0.394 | 72 K | DLinear.yaml |
NLinear | 0.386 | 0.392 | 40 K | NLinear.yaml |
Nonstationary | 0.600 | 0.515 | 55.5 M | Nonstationary.yaml |
PatchTST | 0.385 | 0.397 | 2.0 M | PatchTST.yaml |
RLinear | 0.384 | 0.392 | 40 K | RLinear.yaml |
TiDE | 0.405 | 0.412 | 31.7 M | TiDE.yaml |
TimesNet | 0.417 | 0.431 | 4.9 M | TimesNet.yaml |
注:以上精度指标测量自 ETTH1 数据集 (在测试集test.csv上的评测结果)。
模型名称 | precison | recall | f1_score | 模型存储大小 | yaml 文件 |
---|---|---|---|---|---|
AutoEncoder_ad | 99.36 | 84.36 | 91.25 | 52 K | AutoEncoder_ad.yaml |
DLinear_ad | 98.98 | 93.96 | 96.41 | 112 K | DLinear_ad.yaml |
Nonstationary_ad | 98.55 | 88.95 | 93.51 | 1.8 M | Nonstationary_ad.yaml |
PatchTST_ad | 98.78 | 90.70 | 94.57 | 320 K | PatchTST_ad.yaml |
TimesNet_ad | 98.37 | 94.80 | 96.56 | 1.3 M | TimesNet_ad.yaml |
注:以上精度指标测量自 PSM 数据集。
模型名称 | acc(%) | 模型存储大小 | yaml 文件 |
---|---|---|---|
TimesNet_cls | 87.5 | 792 K | TimesNet_cls.yaml |
注:以上精度指标测量自 UWaveGestureLibrary数据集。
注:以上所有模型 GPU 推理耗时基于 NVIDIA Tesla T4 机器,精度类型为 FP32, CPU 推理速度基于 Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz,线程数为8,精度类型为 FP32。