-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathGCN.py
201 lines (177 loc) · 7.78 KB
/
GCN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# -*- coding: utf-8 -*-
"""
Created on Thu Apr 1 11:23:51 2022
@author: Arvin Ou
"""
import math
import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import scipy.sparse as sp
import argparse
# Two layer gcn
class GCNLayer(nn.Module):
def __init__(self,input_features,output_features,bias=False):
super(GCNLayer,self).__init__()
self.input_features = input_features
self.output_features = output_features
self.weights = nn.Parameter(torch.FloatTensor(input_features,output_features))
if bias:
self.bias = nn.Parameter(torch.FloatTensor(output_features))
else:
self.register_parameter('bias',None)
self.reset_parameters()
def reset_parameters(self):
std = 1./math.sqrt(self.weights.size(1))
self.weights.data.uniform_(-std,std)
if self.bias is not None:
self.bias.data.uniform_(-std,std)
def forward(self,adj,x):
support = torch.mm(x,self.weights)
output = torch.spmm(adj,support)
if self.bias is not None:
return output+self.bias
return output
class GCN(nn.Module):
def __init__(self,input_size,hidden_size,num_class,dropout,bias=False):
super(GCN,self).__init__()
self.input_size=input_size
self.hidden_size=hidden_size
self.num_class = num_class
self.gcn1 = GCNLayer(input_size,hidden_size,bias=bias)
self.gcn2 = GCNLayer(hidden_size,num_class,bias=bias)
self.dropout = dropout
def forward(self,adj,x):
x = F.relu(self.gcn1(adj,x))
x = F.dropout(x,self.dropout,training=self.training)
x = self.gcn2(adj,x)
return F.log_softmax(x,dim=1)
def encode_onehot(labels):
classes = set(labels)
classes_dict = {c: np.identity(len(classes))[i, :] for i, c in
enumerate(classes)}
labels_onehot = np.array(list(map(classes_dict.get, labels)),
dtype=np.int32)
return labels_onehot
def normalize(mx):
"""Row-normalize sparse matrix"""
rowsum = np.array(mx.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
mx = r_mat_inv.dot(mx)
return mx
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
def prepare_data(features,edge_list,labels):
"""准备输入数据
Params:
features:网络节点总数ee
edge_list:连边列表e
"""
# 构造输入特征
features = sp.csr_matrix(features,dtype=np.float64)
adj = sp.coo_matrix((np.ones(edge_list.shape[0]), (edge_list[:, 0], edge_list[:, 1])), shape=(),
dtype=np.int64)
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
adj = normalize(adj + sp.eye(adj.shape[0]))
features = normalize(features)
features = torch.FloatTensor(np.array(features.todense()))
adj = sparse_mx_to_torch_sparse_tensor(adj)
labels = torch.LongTensor(labels)
return features,adj,labels
def load_data(path="./cora/", dataset="cora"):
"""读取引文网络数据cora"""
print('Loading {} dataset...'.format(dataset))
idx_features_labels = np.genfromtxt("{}{}.content".format(path, dataset),
dtype=np.dtype(str)) # 使用numpy读取.txt文件
features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32) # 获取特征矩阵
labels = encode_onehot(idx_features_labels[:, -1]) # 获取标签
# build graph
idx = np.array(idx_features_labels[:, 0], dtype=np.int32)
idx_map = {j: i for i, j in enumerate(idx)}
edges_unordered = np.genfromtxt("{}{}.cites".format(path, dataset),
dtype=np.int32)
edges = np.array(list(map(idx_map.get, edges_unordered.flatten())),
dtype=np.int32).reshape(edges_unordered.shape)
adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),
shape=(labels.shape[0], labels.shape[0]),
dtype=np.float32)
# build symmetric adjacency matrix
adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
features = normalize(features)
adj = normalize(adj + sp.eye(adj.shape[0]))
idx_train = range(140)
idx_val = range(200, 500)
idx_test = range(500, 1500)
features = torch.FloatTensor(np.array(features.todense()))
labels = torch.LongTensor(np.where(labels)[1])
adj = sparse_mx_to_torch_sparse_tensor(adj)
idx_train = torch.LongTensor(idx_train)
idx_val = torch.LongTensor(idx_val)
idx_test = torch.LongTensor(idx_test)
return adj, features, labels, idx_train, idx_val, idx_test
def accuracy(output, labels):
preds = output.max(1)[1].type_as(labels)
correct = preds.eq(labels).double()
correct = correct.sum()
return correct / len(labels)
def train_gcn(epoch):
t = time.time()
model.train()
optimizer.zero_grad()
output = model(adj,features)
loss = F.nll_loss(output[idx_train],labels[idx_train])
acc = accuracy(output[idx_train],labels[idx_train])
loss.backward()
optimizer.step()
loss_val = F.nll_loss(output[idx_val],labels[idx_val])
acc_val = accuracy(output[idx_val], labels[idx_val])
print('Epoch: {:04d}'.format(epoch+1),
'loss_train: {:.4f}'.format(loss.item()),
'acc_train: {:.4f}'.format(acc.item()),
'loss_val: {:.4f}'.format(loss_val.item()),
'acc_val: {:.4f}'.format(acc_val.item()),
'time: {:.4f}s'.format(time.time() - t))
def test():
model.eval()
output = model(adj,features)
loss_test = F.nll_loss(output[idx_test], labels[idx_test])
acc_test = accuracy(output[idx_test], labels[idx_test])
print("Test set results:",
"loss= {:.4f}".format(loss_test.item()),
"accuracy= {:.4f}".format(acc_test.item()))
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--fastmode', action='store_true', default=False,
help='Validate during training pass.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=200,
help='Number of epochs to train.')
parser.add_argument('--lr', type=float, default=0.01,
help='Initial learning rate.')
parser.add_argument('--weight_decay', type=float, default=5e-4,
help='Weight decay (L2 loss on parameters).')
parser.add_argument('--hidden', type=int, default=16,
help='Number of hidden units.')
parser.add_argument('--dropout', type=float, default=0.5,
help='Dropout rate (1 - keep probability).')
args = parser.parse_args()
np.random.seed(args.seed)
adj, features, labels, idx_train, idx_val, idx_test = load_data()
model = GCN(features.shape[1],args.hidden,labels.max().item() + 1,dropout=args.dropout)
optimizer = optim.Adam(model.parameters(),lr=args.lr,weight_decay=args.weight_decay)
for epoch in range(args.epochs):
train_gcn(epoch)