diff --git a/lapack-netlib/SRC/cgebrd.f b/lapack-netlib/SRC/cgebrd.f index 5687161a50..5920b1cf58 100644 --- a/lapack-netlib/SRC/cgebrd.f +++ b/lapack-netlib/SRC/cgebrd.f @@ -123,7 +123,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of the array WORK. LWORK >= max(1,M,N). +*> The length of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MAX(M,N), otherwise. *> For optimum performance LWORK >= (M+N)*NB, where NB *> is the optimal blocksize. *> @@ -148,7 +149,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complexGEcomputational +*> \ingroup gebrd * *> \par Further Details: * ===================== @@ -225,8 +226,8 @@ SUBROUTINE CGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * .. * .. Local Scalars .. LOGICAL LQUERY - INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB, - $ NBMIN, NX, WS + INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKMIN, LWKOPT, + $ MINMN, NB, NBMIN, NX, WS * .. * .. External Subroutines .. EXTERNAL CGEBD2, CGEMM, CLABRD, XERBLA @@ -236,16 +237,24 @@ SUBROUTINE CGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * .. * .. External Functions .. INTEGER ILAENV - EXTERNAL ILAENV + REAL SROUNDUP_LWORK + EXTERNAL ILAENV, SROUNDUP_LWORK * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 - NB = MAX( 1, ILAENV( 1, 'CGEBRD', ' ', M, N, -1, -1 ) ) - LWKOPT = ( M+N )*NB - WORK( 1 ) = REAL( LWKOPT ) + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWKMIN = 1 + LWKOPT = 1 + ELSE + LWKMIN = MAX( M, N ) + NB = MAX( 1, ILAENV( 1, 'CGEBRD', ' ', M, N, -1, -1 ) ) + LWKOPT = ( M+N )*NB + END IF + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 @@ -253,7 +262,7 @@ SUBROUTINE CGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -10 END IF IF( INFO.LT.0 ) THEN @@ -265,7 +274,6 @@ SUBROUTINE CGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * * Quick return if possible * - MINMN = MIN( M, N ) IF( MINMN.EQ.0 ) THEN WORK( 1 ) = 1 RETURN @@ -284,7 +292,7 @@ SUBROUTINE CGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * Determine when to switch from blocked to unblocked code. * IF( NX.LT.MINMN ) THEN - WS = ( M+N )*NB + WS = LWKOPT IF( LWORK.LT.WS ) THEN * * Not enough work space for the optimal NB, consider using @@ -343,7 +351,7 @@ SUBROUTINE CGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * CALL CGEBD2( M-I+1, N-I+1, A( I, I ), LDA, D( I ), E( I ), $ TAUQ( I ), TAUP( I ), WORK, IINFO ) - WORK( 1 ) = WS + WORK( 1 ) = SROUNDUP_LWORK( WS ) RETURN * * End of CGEBRD diff --git a/lapack-netlib/SRC/cgehrd.f b/lapack-netlib/SRC/cgehrd.f index f407f931a9..7ba87cc01b 100644 --- a/lapack-netlib/SRC/cgehrd.f +++ b/lapack-netlib/SRC/cgehrd.f @@ -89,7 +89,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX array, dimension (LWORK) +*> WORK is COMPLEX array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> @@ -222,13 +222,19 @@ SUBROUTINE CGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) INFO = -8 END IF * + NH = IHI - ILO + 1 IF( INFO.EQ.0 ) THEN * * Compute the workspace requirements * - NB = MIN( NBMAX, ILAENV( 1, 'CGEHRD', ' ', N, ILO, IHI, -1 ) ) - LWKOPT = N*NB + TSIZE - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + IF( NH.LE.1 ) THEN + LWKOPT = 1 + ELSE + NB = MIN( NBMAX, ILAENV( 1, 'DGEHRD', ' ', N, ILO, IHI, + $ -1 ) ) + LWKOPT = N*NB + TSIZE + END IF + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -249,7 +255,6 @@ SUBROUTINE CGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) * * Quick return if possible * - NH = IHI - ILO + 1 IF( NH.LE.1 ) THEN WORK( 1 ) = 1 RETURN @@ -269,7 +274,7 @@ SUBROUTINE CGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) * * Determine if workspace is large enough for blocked code * - IF( LWORK.LT.N*NB+TSIZE ) THEN + IF( LWORK.LT.LWKOPT ) THEN * * Not enough workspace to use optimal NB: determine the * minimum value of NB, and reduce NB or force use of @@ -345,7 +350,8 @@ SUBROUTINE CGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) * Use unblocked code to reduce the rest of the matrix * CALL CGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO ) - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) +* + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/cgelq.f b/lapack-netlib/SRC/cgelq.f index ff482bc42e..24aaa982e3 100644 --- a/lapack-netlib/SRC/cgelq.f +++ b/lapack-netlib/SRC/cgelq.f @@ -98,7 +98,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1 or -2, then a workspace query is assumed. The routine *> only calculates the sizes of the T and WORK arrays, returns these *> values as the first entries of the T and WORK arrays, and no error @@ -295,9 +295,9 @@ SUBROUTINE CGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, T( 2 ) = MB T( 3 ) = NB IF( MINW ) THEN - WORK( 1 ) = SROUNDUP_LWORK(LWMIN) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) ELSE - WORK( 1 ) = SROUNDUP_LWORK(LWREQ) + WORK( 1 ) = SROUNDUP_LWORK( LWREQ ) END IF END IF IF( INFO.NE.0 ) THEN @@ -322,7 +322,7 @@ SUBROUTINE CGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ LWORK, INFO ) END IF * - WORK( 1 ) = SROUNDUP_LWORK(LWREQ) + WORK( 1 ) = SROUNDUP_LWORK( LWREQ ) * RETURN * diff --git a/lapack-netlib/SRC/cgelqf.f b/lapack-netlib/SRC/cgelqf.f index 75f5bc9601..3847a958a7 100644 --- a/lapack-netlib/SRC/cgelqf.f +++ b/lapack-netlib/SRC/cgelqf.f @@ -93,7 +93,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,M). +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M, otherwise. *> For optimum performance LWORK >= M*NB, where NB is the *> optimal blocksize. *> @@ -175,9 +176,8 @@ SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * Test the input arguments * INFO = 0 + K = MIN( M, N ) NB = ILAENV( 1, 'CGELQF', ' ', M, N, -1, -1 ) - LWKOPT = M*NB - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 @@ -185,19 +185,25 @@ SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN - INFO = -7 + ELSE IF( .NOT.LQUERY ) THEN + IF( LWORK.LE.0 .OR. ( N.GT.0 .AND. LWORK.LT.MAX( 1, M ) ) ) + $ INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGELQF', -INFO ) RETURN ELSE IF( LQUERY ) THEN + IF( K.EQ.0 ) THEN + LWKOPT = 1 + ELSE + LWKOPT = M*NB + END IF + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN END IF * * Quick return if possible * - K = MIN( M, N ) IF( K.EQ.0 ) THEN WORK( 1 ) = 1 RETURN @@ -267,7 +273,7 @@ SUBROUTINE CGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) $ CALL CGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK, $ IINFO ) * - WORK( 1 ) = SROUNDUP_LWORK(IWS) + WORK( 1 ) = SROUNDUP_LWORK( IWS ) RETURN * * End of CGELQF diff --git a/lapack-netlib/SRC/cgemlq.f b/lapack-netlib/SRC/cgemlq.f index e0cf78bc0f..e5b02b6693 100644 --- a/lapack-netlib/SRC/cgemlq.f +++ b/lapack-netlib/SRC/cgemlq.f @@ -110,16 +110,17 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) +*> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1, then a workspace query is assumed. The routine *> only calculates the size of the WORK array, returns this -*> value as WORK(1), and no error message related to WORK +*> value as WORK(1), and no error message related to WORK *> is issued by XERBLA. *> \endverbatim *> @@ -143,7 +144,7 @@ *> *> \verbatim *> -*> These details are particular for this LAPACK implementation. Users should not +*> These details are particular for this LAPACK implementation. Users should not *> take them for granted. These details may change in the future, and are not likely *> true for another LAPACK implementation. These details are relevant if one wants *> to try to understand the code. They are not part of the interface. @@ -159,11 +160,13 @@ *> block sizes MB and NB returned by ILAENV, CGELQ will use either *> CLASWLQ (if the matrix is wide-and-short) or CGELQT to compute *> the LQ factorization. -*> This version of CGEMLQ will use either CLAMSWLQ or CGEMLQT to +*> This version of CGEMLQ will use either CLAMSWLQ or CGEMLQT to *> multiply matrix Q by another matrix. *> Further Details in CLAMSWLQ or CGEMLQT. *> \endverbatim *> +*> \ingroup gemlq +*> * ===================================================================== SUBROUTINE CGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, $ C, LDC, WORK, LWORK, INFO ) @@ -185,11 +188,12 @@ SUBROUTINE CGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * .. * .. Local Scalars .. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER MB, NB, LW, NBLCKS, MN + INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME - EXTERNAL LSAME + REAL SROUNDUP_LWORK + EXTERNAL LSAME, SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL CLAMSWLQ, CGEMLQT, XERBLA @@ -201,7 +205,7 @@ SUBROUTINE CGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Test the input arguments * - LQUERY = LWORK.EQ.-1 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'C' ) LEFT = LSAME( SIDE, 'L' ) @@ -216,6 +220,13 @@ SUBROUTINE CGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, LW = M * MB MN = N END IF +* + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF * IF( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN IF( MOD( MN - K, NB - K ) .EQ. 0 ) THEN @@ -244,12 +255,12 @@ SUBROUTINE CGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, INFO = -9 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 - ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( ( LWORK.LT.LWMIN ) .AND. ( .NOT.LQUERY ) ) THEN INFO = -13 END IF * IF( INFO.EQ.0 ) THEN - WORK( 1 ) = REAL( LW ) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) END IF * IF( INFO.NE.0 ) THEN @@ -261,7 +272,7 @@ SUBROUTINE CGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Quick return if possible * - IF( MIN( M, N, K ).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF * @@ -274,7 +285,7 @@ SUBROUTINE CGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, $ MB, C, LDC, WORK, LWORK, INFO ) END IF * - WORK( 1 ) = REAL( LW ) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) * RETURN * diff --git a/lapack-netlib/SRC/cgemqr.f b/lapack-netlib/SRC/cgemqr.f index ea9de146e5..0b7dd9dd71 100644 --- a/lapack-netlib/SRC/cgemqr.f +++ b/lapack-netlib/SRC/cgemqr.f @@ -111,16 +111,17 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) +*> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1, then a workspace query is assumed. The routine *> only calculates the size of the WORK array, returns this -*> value as WORK(1), and no error message related to WORK +*> value as WORK(1), and no error message related to WORK *> is issued by XERBLA. *> \endverbatim *> @@ -144,7 +145,7 @@ *> *> \verbatim *> -*> These details are particular for this LAPACK implementation. Users should not +*> These details are particular for this LAPACK implementation. Users should not *> take them for granted. These details may change in the future, and are not likely *> true for another LAPACK implementation. These details are relevant if one wants *> to try to understand the code. They are not part of the interface. @@ -166,6 +167,8 @@ *> *> \endverbatim *> +*> \ingroup gemqr +*> * ===================================================================== SUBROUTINE CGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, $ C, LDC, WORK, LWORK, INFO ) @@ -187,11 +190,12 @@ SUBROUTINE CGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * .. * .. Local Scalars .. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER MB, NB, LW, NBLCKS, MN + INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME - EXTERNAL LSAME + REAL SROUNDUP_LWORK + EXTERNAL LSAME, SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL CGEMQRT, CLAMTSQR, XERBLA @@ -203,7 +207,7 @@ SUBROUTINE CGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Test the input arguments * - LQUERY = LWORK.EQ.-1 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'C' ) LEFT = LSAME( SIDE, 'L' ) @@ -218,6 +222,13 @@ SUBROUTINE CGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, LW = MB * NB MN = N END IF +* + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF * IF( ( MB.GT.K ) .AND. ( MN.GT.K ) ) THEN IF( MOD( MN - K, MB - K ).EQ.0 ) THEN @@ -251,7 +262,7 @@ SUBROUTINE CGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, END IF * IF( INFO.EQ.0 ) THEN - WORK( 1 ) = LW + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) END IF * IF( INFO.NE.0 ) THEN @@ -263,7 +274,7 @@ SUBROUTINE CGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Quick return if possible * - IF( MIN( M, N, K ).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF * @@ -276,7 +287,7 @@ SUBROUTINE CGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, $ NB, C, LDC, WORK, LWORK, INFO ) END IF * - WORK( 1 ) = LW + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) * RETURN * diff --git a/lapack-netlib/SRC/cgeqlf.f b/lapack-netlib/SRC/cgeqlf.f index 918bbddad5..6c67344c5c 100644 --- a/lapack-netlib/SRC/cgeqlf.f +++ b/lapack-netlib/SRC/cgeqlf.f @@ -88,7 +88,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,N). +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= N, otherwise. *> For optimum performance LWORK >= N*NB, where NB is *> the optimal blocksize. *> @@ -187,10 +188,11 @@ SUBROUTINE CGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) NB = ILAENV( 1, 'CGEQLF', ' ', M, N, -1, -1 ) LWKOPT = N*NB END IF - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * - IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN - INFO = -7 + IF( .NOT.LQUERY ) THEN + IF( LWORK.LE.0 .OR. ( M.GT.0 .AND. LWORK.LT.MAX( 1, N ) ) ) + $ INFO = -7 END IF END IF * @@ -277,7 +279,7 @@ SUBROUTINE CGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) IF( MU.GT.0 .AND. NU.GT.0 ) $ CALL CGEQL2( MU, NU, A, LDA, TAU, WORK, IINFO ) * - WORK( 1 ) = SROUNDUP_LWORK(IWS) + WORK( 1 ) = SROUNDUP_LWORK( IWS ) RETURN * * End of CGEQLF diff --git a/lapack-netlib/SRC/cgeqp3rk.f b/lapack-netlib/SRC/cgeqp3rk.f index 5878606840..731c44edb4 100644 --- a/lapack-netlib/SRC/cgeqp3rk.f +++ b/lapack-netlib/SRC/cgeqp3rk.f @@ -428,7 +428,8 @@ *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. -*. LWORK >= N+NRHS-1 +*> LWORK >= 1, if MIN(M,N) = 0, and +*> LWORK >= N+NRHS-1, otherwise. *> For optimal performance LWORK >= NB*( N+NRHS+1 ), *> where NB is the optimal block size for CGEQP3RK returned *> by ILAENV. Minimal block size MINNB=2. @@ -627,8 +628,9 @@ SUBROUTINE CGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, * .. External Functions .. LOGICAL SISNAN INTEGER ISAMAX, ILAENV - REAL SLAMCH, SCNRM2 - EXTERNAL SISNAN, SLAMCH, SCNRM2, ISAMAX, ILAENV + REAL SLAMCH, SCNRM2, SROUNDUP_LWORK + EXTERNAL SISNAN, SLAMCH, SCNRM2, ISAMAX, ILAENV, + $ SROUNDUP_LWORK * .. * .. Intrinsic Functions .. INTRINSIC CMPLX, MAX, MIN @@ -703,7 +705,7 @@ SUBROUTINE CGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, * LWKOPT = 2*N + NB*( N+NRHS+1 ) END IF - WORK( 1 ) = CMPLX( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN INFO = -15 @@ -726,7 +728,7 @@ SUBROUTINE CGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, K = 0 MAXC2NRMK = ZERO RELMAXC2NRMK = ZERO - WORK( 1 ) = CMPLX( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN END IF * @@ -778,7 +780,7 @@ SUBROUTINE CGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, * * Array TAU is not set and contains undefined elements. * - WORK( 1 ) = CMPLX( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN END IF * @@ -797,7 +799,7 @@ SUBROUTINE CGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, TAU( J ) = CZERO END DO * - WORK( 1 ) = CMPLX( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN * END IF @@ -828,7 +830,7 @@ SUBROUTINE CGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, DO J = 1, MINMN TAU( J ) = CZERO END DO - WORK( 1 ) = CMPLX( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN END IF * @@ -873,7 +875,7 @@ SUBROUTINE CGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, TAU( J ) = CZERO END DO * - WORK( 1 ) = CMPLX( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN END IF * @@ -991,7 +993,7 @@ SUBROUTINE CGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, * * Return from the routine. * - WORK( 1 ) = CMPLX( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * @@ -1082,7 +1084,7 @@ SUBROUTINE CGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, * END IF * - WORK( 1 ) = CMPLX( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/cgeqr.f b/lapack-netlib/SRC/cgeqr.f index d10e3da65f..3617594d02 100644 --- a/lapack-netlib/SRC/cgeqr.f +++ b/lapack-netlib/SRC/cgeqr.f @@ -99,7 +99,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1 or -2, then a workspace query is assumed. The routine *> only calculates the sizes of the T and WORK arrays, returns these *> values as the first entries of the T and WORK arrays, and no error @@ -168,6 +168,8 @@ *> *> \endverbatim *> +*> \ingroup geqr +*> * ===================================================================== SUBROUTINE CGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ INFO ) @@ -188,11 +190,12 @@ SUBROUTINE CGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, * .. * .. Local Scalars .. LOGICAL LQUERY, LMINWS, MINT, MINW - INTEGER MB, NB, MINTSZ, NBLCKS + INTEGER MB, NB, MINTSZ, NBLCKS, LWMIN, LWREQ * .. * .. External Functions .. LOGICAL LSAME - EXTERNAL LSAME + REAL SROUNDUP_LWORK + EXTERNAL LSAME, SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL CLATSQR, CGEQRT, XERBLA @@ -244,8 +247,10 @@ SUBROUTINE CGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, * * Determine if the workspace size satisfies minimal size * + LWMIN = MAX( 1, N ) + LWREQ = MAX( 1, N*NB ) LMINWS = .FALSE. - IF( ( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) .OR. LWORK.LT.NB*N ) + IF( ( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) .OR. LWORK.LT.LWREQ ) $ .AND. ( LWORK.GE.N ) .AND. ( TSIZE.GE.MINTSZ ) $ .AND. ( .NOT.LQUERY ) ) THEN IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) ) THEN @@ -253,7 +258,7 @@ SUBROUTINE CGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, NB = 1 MB = M END IF - IF( LWORK.LT.NB*N ) THEN + IF( LWORK.LT.LWREQ ) THEN LMINWS = .TRUE. NB = 1 END IF @@ -268,7 +273,7 @@ SUBROUTINE CGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, ELSE IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) $ .AND. ( .NOT.LQUERY ) .AND. ( .NOT.LMINWS ) ) THEN INFO = -6 - ELSE IF( ( LWORK.LT.MAX( 1, N*NB ) ) .AND. ( .NOT.LQUERY ) + ELSE IF( ( LWORK.LT.LWREQ ) .AND. ( .NOT.LQUERY ) $ .AND. ( .NOT.LMINWS ) ) THEN INFO = -8 END IF @@ -282,9 +287,9 @@ SUBROUTINE CGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, T( 2 ) = MB T( 3 ) = NB IF( MINW ) THEN - WORK( 1 ) = MAX( 1, N ) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) ELSE - WORK( 1 ) = MAX( 1, NB*N ) + WORK( 1 ) = SROUNDUP_LWORK( LWREQ ) END IF END IF IF( INFO.NE.0 ) THEN @@ -309,7 +314,7 @@ SUBROUTINE CGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ LWORK, INFO ) END IF * - WORK( 1 ) = MAX( 1, NB*N ) + WORK( 1 ) = SROUNDUP_LWORK( LWREQ ) * RETURN * diff --git a/lapack-netlib/SRC/cgeqrfp.f b/lapack-netlib/SRC/cgeqrfp.f index eaf98ddf34..5b6226c67b 100644 --- a/lapack-netlib/SRC/cgeqrfp.f +++ b/lapack-netlib/SRC/cgeqrfp.f @@ -97,7 +97,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,N). +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= N, otherwise. *> For optimum performance LWORK >= N*NB, where NB is *> the optimal blocksize. *> @@ -162,8 +163,8 @@ SUBROUTINE CGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * * .. Local Scalars .. LOGICAL LQUERY - INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB, - $ NBMIN, NX + INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKMIN, LWKOPT, + $ NB, NBMIN, NX * .. * .. External Subroutines .. EXTERNAL CGEQR2P, CLARFB, CLARFT, XERBLA @@ -182,8 +183,16 @@ SUBROUTINE CGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * INFO = 0 NB = ILAENV( 1, 'CGEQRF', ' ', M, N, -1, -1 ) - LWKOPT = N*NB - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + K = MIN( M, N ) + IF( K.EQ.0 ) THEN + LWKMIN = 1 + LWKOPT = 1 + ELSE + LWKMIN = N + LWKOPT = N*NB + END IF + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) +* LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 @@ -191,7 +200,7 @@ SUBROUTINE CGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN @@ -203,7 +212,6 @@ SUBROUTINE CGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * * Quick return if possible * - K = MIN( M, N ) IF( K.EQ.0 ) THEN WORK( 1 ) = 1 RETURN @@ -211,7 +219,7 @@ SUBROUTINE CGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * NBMIN = 2 NX = 0 - IWS = N + IWS = LWKMIN IF( NB.GT.1 .AND. NB.LT.K ) THEN * * Determine when to cross over from blocked to unblocked code. @@ -273,7 +281,7 @@ SUBROUTINE CGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) $ CALL CGEQR2P( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK, $ IINFO ) * - WORK( 1 ) = SROUNDUP_LWORK(IWS) + WORK( 1 ) = SROUNDUP_LWORK( IWS ) RETURN * * End of CGEQRFP diff --git a/lapack-netlib/SRC/cgesvdx.f b/lapack-netlib/SRC/cgesvdx.f index fbdb121ca7..e1856a65fd 100644 --- a/lapack-netlib/SRC/cgesvdx.f +++ b/lapack-netlib/SRC/cgesvdx.f @@ -208,7 +208,7 @@ *> \param[out] WORK *> \verbatim *> WORK is COMPLEX array, dimension (MAX(1,LWORK)) -*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK; +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK @@ -261,7 +261,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complexGEsing +*> \ingroup gesvdx * * ===================================================================== SUBROUTINE CGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, @@ -312,8 +312,8 @@ SUBROUTINE CGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, * .. External Functions .. LOGICAL LSAME INTEGER ILAENV - REAL SLAMCH, CLANGE - EXTERNAL LSAME, ILAENV, SLAMCH, CLANGE + REAL SLAMCH, CLANGE, SROUNDUP_LWORK + EXTERNAL LSAME, ILAENV, SLAMCH, CLANGE, SROUNDUP_LWORK * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, SQRT @@ -448,7 +448,7 @@ SUBROUTINE CGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, END IF END IF MAXWRK = MAX( MAXWRK, MINWRK ) - WORK( 1 ) = CMPLX( REAL( MAXWRK ), ZERO ) + WORK( 1 ) = SROUNDUP_LWORK( MAXWRK ) * IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN INFO = -19 @@ -464,7 +464,7 @@ SUBROUTINE CGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, * * Quick return if possible * - IF( M.EQ.0 .OR. N.EQ.0 ) THEN + IF( MINMN.EQ.0 ) THEN RETURN END IF * @@ -846,7 +846,7 @@ SUBROUTINE CGESVDX( JOBU, JOBVT, RANGE, M, N, A, LDA, VL, VU, * * Return optimal workspace in WORK(1) * - WORK( 1 ) = CMPLX( REAL( MAXWRK ), ZERO ) + WORK( 1 ) = SROUNDUP_LWORK( MAXWRK ) * RETURN * diff --git a/lapack-netlib/SRC/cgesvj.f b/lapack-netlib/SRC/cgesvj.f index 149cf5e484..b9c8f1709e 100644 --- a/lapack-netlib/SRC/cgesvj.f +++ b/lapack-netlib/SRC/cgesvj.f @@ -208,15 +208,17 @@ *> \verbatim *> CWORK is COMPLEX array, dimension (max(1,LWORK)) *> Used as workspace. -*> If on entry LWORK = -1, then a workspace query is assumed and -*> no computation is done; CWORK(1) is set to the minial (and optimal) -*> length of CWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER. -*> Length of CWORK, LWORK >= M+N. +*> Length of CWORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M+N, otherwise. +*> +*> If on entry LWORK = -1, then a workspace query is assumed and +*> no computation is done; CWORK(1) is set to the minial (and optimal) +*> length of CWORK. *> \endverbatim *> *> \param[in,out] RWORK @@ -247,15 +249,17 @@ *> RWORK(6) = the largest absolute value over all sines of the *> Jacobi rotation angles in the last sweep. It can be *> useful for a post festum analysis. -*> If on entry LRWORK = -1, then a workspace query is assumed and -*> no computation is done; RWORK(1) is set to the minial (and optimal) -*> length of RWORK. *> \endverbatim *> *> \param[in] LRWORK *> \verbatim *> LRWORK is INTEGER -*> Length of RWORK, LRWORK >= MAX(6,N). +*> Length of RWORK. +*> LRWORK >= 1, if MIN(M,N) = 0, and LRWORK >= MAX(6,N), otherwise +*> +*> If on entry LRWORK = -1, then a workspace query is assumed and +*> no computation is done; RWORK(1) is set to the minial (and optimal) +*> length of RWORK. *> \endverbatim *> *> \param[out] INFO @@ -276,7 +280,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complexGEcomputational +*> \ingroup gesvj * *> \par Further Details: * ===================== @@ -374,16 +378,17 @@ SUBROUTINE CGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, PARAMETER ( NSWEEP = 30 ) * .. * .. Local Scalars .. - COMPLEX AAPQ, OMPQ - REAL AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG, - $ BIGTHETA, CS, CTOL, EPSLN, MXAAPQ, - $ MXSINJ, ROOTBIG, ROOTEPS, ROOTSFMIN, ROOTTOL, - $ SKL, SFMIN, SMALL, SN, T, TEMP1, THETA, THSIGN, TOL - INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1, - $ ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, N2, N34, - $ N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND - LOGICAL APPLV, GOSCALE, LOWER, LQUERY, LSVEC, NOSCALE, ROTOK, - $ RSVEC, UCTOL, UPPER + COMPLEX AAPQ, OMPQ + REAL AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG, + $ BIGTHETA, CS, CTOL, EPSLN, MXAAPQ, + $ MXSINJ, ROOTBIG, ROOTEPS, ROOTSFMIN, ROOTTOL, + $ SKL, SFMIN, SMALL, SN, T, TEMP1, THETA, THSIGN, TOL + INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1, + $ ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, N2, N34, + $ N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND, + $ MINMN, LWMIN, LRWMIN + LOGICAL APPLV, GOSCALE, LOWER, LQUERY, LSVEC, NOSCALE, ROTOK, + $ RSVEC, UCTOL, UPPER * .. * .. * .. Intrinsic Functions .. @@ -398,8 +403,8 @@ SUBROUTINE CGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, INTEGER ISAMAX EXTERNAL ISAMAX * from LAPACK - REAL SLAMCH - EXTERNAL SLAMCH + REAL SLAMCH, SROUNDUP_LWORK + EXTERNAL SLAMCH, SROUNDUP_LWORK LOGICAL LSAME EXTERNAL LSAME * .. @@ -422,7 +427,16 @@ SUBROUTINE CGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, UPPER = LSAME( JOBA, 'U' ) LOWER = LSAME( JOBA, 'L' ) * - LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 ) + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWMIN = 1 + LRWMIN = 1 + ELSE + LWMIN = M + N + LRWMIN = MAX( 6, N ) + END IF +* + LQUERY = ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) IF( .NOT.( UPPER .OR. LOWER .OR. LSAME( JOBA, 'G' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( LSVEC .OR. UCTOL .OR. LSAME( JOBU, 'N' ) ) ) THEN @@ -442,9 +456,9 @@ SUBROUTINE CGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, INFO = -11 ELSE IF( UCTOL .AND. ( RWORK( 1 ).LE.ONE ) ) THEN INFO = -12 - ELSE IF( LWORK.LT.( M+N ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. ( .NOT.LQUERY ) ) THEN INFO = -13 - ELSE IF( LRWORK.LT.MAX( N, 6 ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( LRWORK.LT.LRWMIN .AND. ( .NOT.LQUERY ) ) THEN INFO = -15 ELSE INFO = 0 @@ -454,15 +468,15 @@ SUBROUTINE CGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGESVJ', -INFO ) RETURN - ELSE IF ( LQUERY ) THEN - CWORK(1) = M + N - RWORK(1) = MAX( N, 6 ) + ELSE IF( LQUERY ) THEN + CWORK( 1 ) = SROUNDUP_LWORK( LWMIN ) + RWORK( 1 ) = SROUNDUP_LWORK( LRWMIN ) RETURN END IF * * #:) Quick return for void matrix * - IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )RETURN + IF( MINMN.EQ.0 ) RETURN * * Set numerical parameters * The stopping criterion for Jacobi rotations is diff --git a/lapack-netlib/SRC/cgetri.f b/lapack-netlib/SRC/cgetri.f index 2060d1444f..2eb3da7abe 100644 --- a/lapack-netlib/SRC/cgetri.f +++ b/lapack-netlib/SRC/cgetri.f @@ -153,8 +153,8 @@ SUBROUTINE CGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO ) * INFO = 0 NB = ILAENV( 1, 'CGETRI', ' ', N, -1, -1, -1 ) - LWKOPT = N*NB - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + LWKOPT = MAX( 1, N*NB ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) LQUERY = ( LWORK.EQ.-1 ) IF( N.LT.0 ) THEN INFO = -1 @@ -252,7 +252,7 @@ SUBROUTINE CGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO ) $ CALL CSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 ) 60 CONTINUE * - WORK( 1 ) = SROUNDUP_LWORK(IWS) + WORK( 1 ) = SROUNDUP_LWORK( IWS ) RETURN * * End of CGETRI diff --git a/lapack-netlib/SRC/cgetsls.f b/lapack-netlib/SRC/cgetsls.f index b4bb7562fc..3f43dc8de0 100644 --- a/lapack-netlib/SRC/cgetsls.f +++ b/lapack-netlib/SRC/cgetsls.f @@ -127,7 +127,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1 or -2, then a workspace query is assumed. *> If LWORK = -1, the routine calculates optimal size of WORK for the *> optimal performance and returns this value in WORK(1). @@ -229,7 +229,10 @@ SUBROUTINE CGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB, * * Determine the optimum and minimum LWORK * - IF( M.GE.N ) THEN + IF( MIN( M, N, NRHS ).EQ.0 ) THEN + WSIZEO = 1 + WSIZEM = 1 + ELSE IF ( M.GE.N ) THEN CALL CGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 ) TSZO = INT( TQ( 1 ) ) LWO = INT( WORKQ( 1 ) ) diff --git a/lapack-netlib/SRC/cgetsqrhrt.f b/lapack-netlib/SRC/cgetsqrhrt.f index 4e4dc1d4ad..087e9bc7fa 100644 --- a/lapack-netlib/SRC/cgetsqrhrt.f +++ b/lapack-netlib/SRC/cgetsqrhrt.f @@ -131,13 +131,15 @@ *> \param[in] LWORK *> \verbatim *> The dimension of the array WORK. -*> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), +*> If MIN(M,N) = 0, LWORK >= 1, else +*> LWORK >= MAX( 1, LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), *> where *> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)), *> NB1LOCAL = MIN(NB1,N). *> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL, *> LW1 = NB1LOCAL * N, -*> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ), +*> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ). +*> *> If LWORK = -1, then a workspace query is assumed. *> The routine only calculates the optimal size of the WORK *> array, returns this value as the first entry of the WORK @@ -160,7 +162,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup comlpexOTHERcomputational +*> \ingroup getsqrhrt * *> \par Contributors: * ================== @@ -200,6 +202,10 @@ SUBROUTINE CGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, INTEGER I, IINFO, J, LW1, LW2, LWT, LDWT, LWORKOPT, $ NB1LOCAL, NB2LOCAL, NUM_ALL_ROW_BLOCKS * .. +* .. External Functions .. + REAL SROUNDUP_LWORK + EXTERNAL SROUNDUP_LWORK +* .. * .. External Subroutines .. EXTERNAL CCOPY, CLATSQR, CUNGTSQR_ROW, CUNHR_COL, $ XERBLA @@ -212,7 +218,7 @@ SUBROUTINE CGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, * Test the input arguments * INFO = 0 - LQUERY = LWORK.EQ.-1 + LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 .OR. M.LT.N ) THEN @@ -225,7 +231,7 @@ SUBROUTINE CGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, INFO = -5 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -7 - ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN + ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN INFO = -9 ELSE * @@ -263,8 +269,9 @@ SUBROUTINE CGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ) * LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ) + LWORKOPT = MAX( 1, LWORKOPT ) * - IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN + IF( LWORK.LT.LWORKOPT .AND. .NOT.LQUERY ) THEN INFO = -11 END IF * @@ -277,14 +284,14 @@ SUBROUTINE CGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, CALL XERBLA( 'CGETSQRHRT', -INFO ) RETURN ELSE IF ( LQUERY ) THEN - WORK( 1 ) = CMPLX( LWORKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWORKOPT ) RETURN END IF * * Quick return if possible * IF( MIN( M, N ).EQ.0 ) THEN - WORK( 1 ) = CMPLX( LWORKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWORKOPT ) RETURN END IF * @@ -341,9 +348,9 @@ SUBROUTINE CGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, END IF END DO * - WORK( 1 ) = CMPLX( LWORKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWORKOPT ) RETURN * * End of CGETSQRHRT * - END \ No newline at end of file + END diff --git a/lapack-netlib/SRC/cgges3.f b/lapack-netlib/SRC/cgges3.f index aac9f95103..c1ca796887 100644 --- a/lapack-netlib/SRC/cgges3.f +++ b/lapack-netlib/SRC/cgges3.f @@ -215,7 +215,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= MAX(1,2*N). +*> For good performance, LWORK must generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -260,7 +261,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complexGEeigen +*> \ingroup gges3 * * ===================================================================== SUBROUTINE CGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, @@ -300,7 +301,8 @@ SUBROUTINE CGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL, $ LQUERY, WANTST INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, - $ ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKOPT + $ ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKOPT, + $ LWKMIN REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL, $ PVSR, SMLNUM * .. @@ -310,13 +312,12 @@ SUBROUTINE CGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, * .. * .. External Subroutines .. EXTERNAL CGEQRF, CGGBAK, CGGBAL, CGGHD3, CLAQZ0, CLACPY, - $ CLASCL, CLASET, CTGSEN, CUNGQR, CUNMQR, SLABAD, - $ XERBLA + $ CLASCL, CLASET, CTGSEN, CUNGQR, CUNMQR, XERBLA * .. * .. External Functions .. LOGICAL LSAME - REAL CLANGE, SLAMCH - EXTERNAL LSAME, CLANGE, SLAMCH + REAL CLANGE, SLAMCH, SROUNDUP_LWORK + EXTERNAL LSAME, CLANGE, SLAMCH, SROUNDUP_LWORK * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT @@ -353,6 +354,8 @@ SUBROUTINE CGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) + LWKMIN = MAX( 1, 2*N ) +* IF( IJOBVL.LE.0 ) THEN INFO = -1 ELSE IF( IJOBVR.LE.0 ) THEN @@ -369,7 +372,7 @@ SUBROUTINE CGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, INFO = -14 ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN INFO = -16 - ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -18 END IF * @@ -377,29 +380,33 @@ SUBROUTINE CGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, * IF( INFO.EQ.0 ) THEN CALL CGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR ) - LWKOPT = MAX( 1, N + INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKMIN, N + INT( WORK( 1 ) ) ) CALL CUNMQR( 'L', 'C', N, N, N, B, LDB, WORK, A, LDA, WORK, $ -1, IERR ) - LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKOPT, N + INT( WORK( 1 ) ) ) IF( ILVSL ) THEN CALL CUNGQR( N, N, N, VSL, LDVSL, WORK, WORK, -1, $ IERR ) - LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKOPT, N + INT( WORK( 1 ) ) ) END IF CALL CGGHD3( JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, VSL, $ LDVSL, VSR, LDVSR, WORK, -1, IERR ) - LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKOPT, N + INT( WORK( 1 ) ) ) CALL CLAQZ0( 'S', JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, $ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, -1, $ RWORK, 0, IERR ) - LWKOPT = MAX( LWKOPT, INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKOPT, INT( WORK( 1 ) ) ) IF( WANTST ) THEN CALL CTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, $ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, $ PVSL, PVSR, DIF, WORK, -1, IDUM, 1, IERR ) - LWKOPT = MAX( LWKOPT, INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKOPT, INT( WORK( 1 ) ) ) + END IF + IF( N.EQ.0 ) THEN + WORK( 1 ) = 1 + ELSE + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF - WORK( 1 ) = CMPLX( LWKOPT ) END IF * @@ -422,7 +429,6 @@ SUBROUTINE CGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, EPS = SLAMCH( 'P' ) SMLNUM = SLAMCH( 'S' ) BIGNUM = ONE / SMLNUM - CALL SLABAD( SMLNUM, BIGNUM ) SMLNUM = SQRT( SMLNUM ) / EPS BIGNUM = ONE / SMLNUM * @@ -585,7 +591,7 @@ SUBROUTINE CGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, * 30 CONTINUE * - WORK( 1 ) = CMPLX( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/cggev3.f b/lapack-netlib/SRC/cggev3.f index 9483ecdeb1..d2b75aebc7 100644 --- a/lapack-netlib/SRC/cggev3.f +++ b/lapack-netlib/SRC/cggev3.f @@ -174,7 +174,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= MAX(1,2*N). +*> For good performance, LWORK must generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -208,7 +209,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complexGEeigen +*> \ingroup ggev3 * * ===================================================================== SUBROUTINE CGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, @@ -243,7 +244,7 @@ SUBROUTINE CGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, CHARACTER CHTEMP INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO, $ IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR, - $ LWKOPT + $ LWKOPT, LWKMIN REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, $ SMLNUM, TEMP COMPLEX X @@ -253,13 +254,12 @@ SUBROUTINE CGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, * .. * .. External Subroutines .. EXTERNAL CGEQRF, CGGBAK, CGGBAL, CGGHD3, CLAQZ0, CLACPY, - $ CLASCL, CLASET, CTGEVC, CUNGQR, CUNMQR, SLABAD, - $ XERBLA + $ CLASCL, CLASET, CTGEVC, CUNGQR, CUNMQR, XERBLA * .. * .. External Functions .. LOGICAL LSAME - REAL CLANGE, SLAMCH - EXTERNAL LSAME, CLANGE, SLAMCH + REAL CLANGE, SLAMCH, SROUNDUP_LWORK + EXTERNAL LSAME, CLANGE, SLAMCH, SROUNDUP_LWORK * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MAX, REAL, SQRT @@ -301,6 +301,7 @@ SUBROUTINE CGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) + LWKMIN = MAX( 1, 2*N ) IF( IJOBVL.LE.0 ) THEN INFO = -1 ELSE IF( IJOBVR.LE.0 ) THEN @@ -315,7 +316,7 @@ SUBROUTINE CGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, INFO = -11 ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN INFO = -13 - ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -15 END IF * @@ -323,7 +324,7 @@ SUBROUTINE CGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, * IF( INFO.EQ.0 ) THEN CALL CGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR ) - LWKOPT = MAX( N, N+INT( WORK( 1 ) ) ) + LWKOPT = MAX( LWKMIN, N+INT( WORK( 1 ) ) ) CALL CUNMQR( 'L', 'C', N, N, N, B, LDB, WORK, A, LDA, WORK, $ -1, IERR ) LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) ) @@ -348,7 +349,11 @@ SUBROUTINE CGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, $ RWORK, 0, IERR ) LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) ) END IF - WORK( 1 ) = CMPLX( LWKOPT ) + IF( N.EQ.0 ) THEN + WORK( 1 ) = 1 + ELSE + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) + END IF END IF * IF( INFO.NE.0 ) THEN @@ -368,7 +373,6 @@ SUBROUTINE CGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, EPS = SLAMCH( 'E' )*SLAMCH( 'B' ) SMLNUM = SLAMCH( 'S' ) BIGNUM = ONE / SMLNUM - CALL SLABAD( SMLNUM, BIGNUM ) SMLNUM = SQRT( SMLNUM ) / EPS BIGNUM = ONE / SMLNUM * @@ -549,7 +553,7 @@ SUBROUTINE CGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, IF( ILBSCL ) $ CALL CLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR ) * - WORK( 1 ) = CMPLX( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN * * End of CGGEV3 diff --git a/lapack-netlib/SRC/cgghd3.f b/lapack-netlib/SRC/cgghd3.f index 1074b4828e..f7175a72c7 100644 --- a/lapack-netlib/SRC/cgghd3.f +++ b/lapack-netlib/SRC/cgghd3.f @@ -180,14 +180,14 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX array, dimension (LWORK) +*> WORK is COMPLEX array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of the array WORK. LWORK >= 1. +*> The length of the array WORK. LWORK >= 1. *> For optimum performance LWORK >= 6*N*NB, where NB is the *> optimal blocksize. *> @@ -212,7 +212,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complexOTHERcomputational +*> \ingroup gghd3 * *> \par Further Details: * ===================== @@ -265,7 +265,8 @@ SUBROUTINE CGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, * .. External Functions .. LOGICAL LSAME INTEGER ILAENV - EXTERNAL ILAENV, LSAME + REAL SROUNDUP_LWORK + EXTERNAL ILAENV, LSAME, SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL CGGHRD, CLARTG, CLASET, CUNM22, CROT, CGEMM, @@ -280,8 +281,13 @@ SUBROUTINE CGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, * INFO = 0 NB = ILAENV( 1, 'CGGHD3', ' ', N, ILO, IHI, -1 ) - LWKOPT = MAX( 6*N*NB, 1 ) - WORK( 1 ) = CMPLX( LWKOPT ) + NH = IHI - ILO + 1 + IF( NH.LE.1 ) THEN + LWKOPT = 1 + ELSE + LWKOPT = 6*N*NB + END IF + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) INITQ = LSAME( COMPQ, 'I' ) WANTQ = INITQ .OR. LSAME( COMPQ, 'V' ) INITZ = LSAME( COMPZ, 'I' ) @@ -330,7 +336,6 @@ SUBROUTINE CGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, * * Quick return if possible * - NH = IHI - ILO + 1 IF( NH.LE.1 ) THEN WORK( 1 ) = CONE RETURN @@ -888,7 +893,8 @@ SUBROUTINE CGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, IF ( JCOL.LT.IHI ) $ CALL CGGHRD( COMPQ2, COMPZ2, N, JCOL, IHI, A, LDA, B, LDB, Q, $ LDQ, Z, LDZ, IERR ) - WORK( 1 ) = CMPLX( LWKOPT ) +* + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/cggqrf.f b/lapack-netlib/SRC/cggqrf.f index 29b0bf4af3..309f170e8f 100644 --- a/lapack-netlib/SRC/cggqrf.f +++ b/lapack-netlib/SRC/cggqrf.f @@ -251,8 +251,8 @@ SUBROUTINE CGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, NB2 = ILAENV( 1, 'CGERQF', ' ', N, P, -1, -1 ) NB3 = ILAENV( 1, 'CUNMQR', ' ', N, M, P, -1 ) NB = MAX( NB1, NB2, NB3 ) - LWKOPT = MAX( N, M, P)*NB - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + LWKOPT = MAX( 1, MAX( N, M, P )*NB ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) LQUERY = ( LWORK.EQ.-1 ) IF( N.LT.0 ) THEN INFO = -1 @@ -288,7 +288,7 @@ SUBROUTINE CGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, * RQ factorization of N-by-P matrix B: B = T*Z. * CALL CGERQF( N, P, B, LDB, TAUB, WORK, LWORK, INFO ) - WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) ) + WORK( 1 ) = SROUNDUP_LWORK( MAX( LOPT, INT( WORK( 1 ) ) ) ) * RETURN * diff --git a/lapack-netlib/SRC/cggrqf.f b/lapack-netlib/SRC/cggrqf.f index 273ab3ef7b..8470a1ce22 100644 --- a/lapack-netlib/SRC/cggrqf.f +++ b/lapack-netlib/SRC/cggrqf.f @@ -250,8 +250,8 @@ SUBROUTINE CGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, NB2 = ILAENV( 1, 'CGEQRF', ' ', P, N, -1, -1 ) NB3 = ILAENV( 1, 'CUNMRQ', ' ', M, N, P, -1 ) NB = MAX( NB1, NB2, NB3 ) - LWKOPT = MAX( N, M, P)*NB - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + LWKOPT = MAX( 1, MAX( N, M, P )*NB ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 @@ -288,7 +288,7 @@ SUBROUTINE CGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, * QR factorization of P-by-N matrix B: B = Z*T * CALL CGEQRF( P, N, B, LDB, TAUB, WORK, LWORK, INFO ) - WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) ) + WORK( 1 ) = SROUNDUP_LWORK( MAX( LOPT, INT( WORK( 1 ) ) ) ) * RETURN * diff --git a/lapack-netlib/SRC/cggsvd3.f b/lapack-netlib/SRC/cggsvd3.f index f248aebd52..4c4b85baee 100644 --- a/lapack-netlib/SRC/cggsvd3.f +++ b/lapack-netlib/SRC/cggsvd3.f @@ -278,7 +278,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -333,7 +333,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complexGEsing +*> \ingroup ggsvd3 * *> \par Contributors: * ================== diff --git a/lapack-netlib/SRC/cggsvp3.f b/lapack-netlib/SRC/cggsvp3.f index 008a053a20..e19f7efd51 100644 --- a/lapack-netlib/SRC/cggsvp3.f +++ b/lapack-netlib/SRC/cggsvp3.f @@ -233,7 +233,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -256,7 +256,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complexOTHERcomputational +*> \ingroup ggsvp3 * *> \par Further Details: * ===================== diff --git a/lapack-netlib/SRC/cheevd.f b/lapack-netlib/SRC/cheevd.f index b5ca804ebe..9b62a2df60 100644 --- a/lapack-netlib/SRC/cheevd.f +++ b/lapack-netlib/SRC/cheevd.f @@ -116,8 +116,7 @@ *> *> \param[out] RWORK *> \verbatim -*> RWORK is REAL array, -*> dimension (LRWORK) +*> RWORK is REAL array, dimension (MAX(1,LRWORK)) *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. *> \endverbatim *> @@ -282,8 +281,8 @@ SUBROUTINE CHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, LROPT = LRWMIN LIOPT = LIWMIN END IF - WORK( 1 ) = SROUNDUP_LWORK(LOPT) - RWORK( 1 ) = LROPT + WORK( 1 ) = SROUNDUP_LWORK( LOPT ) + RWORK( 1 ) = SROUNDUP_LWORK( LROPT ) IWORK( 1 ) = LIOPT * IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN @@ -378,8 +377,8 @@ SUBROUTINE CHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, CALL SSCAL( IMAX, ONE / SIGMA, W, 1 ) END IF * - WORK( 1 ) = SROUNDUP_LWORK(LOPT) - RWORK( 1 ) = LROPT + WORK( 1 ) = SROUNDUP_LWORK( LOPT ) + RWORK( 1 ) = SROUNDUP_LWORK( LROPT ) IWORK( 1 ) = LIOPT * RETURN diff --git a/lapack-netlib/SRC/cheevr.f b/lapack-netlib/SRC/cheevr.f index 05c5e66be2..ad5c8cd4aa 100644 --- a/lapack-netlib/SRC/cheevr.f +++ b/lapack-netlib/SRC/cheevr.f @@ -272,7 +272,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of the array WORK. LWORK >= max(1,2*N). +*> The length of the array WORK. +*> If N <= 1, LWORK >= 1, else LWORK >= 2*N. *> For optimal efficiency, LWORK >= (NB+1)*N, *> where NB is the max of the blocksize for CHETRD and for *> CUNMTR as returned by ILAENV. @@ -294,7 +295,8 @@ *> \param[in] LRWORK *> \verbatim *> LRWORK is INTEGER -*> The length of the array RWORK. LRWORK >= max(1,24*N). +*> The length of the array RWORK. +*> If N <= 1, LRWORK >= 1, else LRWORK >= 24*N. *> *> If LRWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal sizes of the WORK, RWORK @@ -313,7 +315,8 @@ *> \param[in] LIWORK *> \verbatim *> LIWORK is INTEGER -*> The dimension of the array IWORK. LIWORK >= max(1,10*N). +*> The dimension of the array IWORK. +*> If N <= 1, LIWORK >= 1, else LIWORK >= 10*N. *> *> If LIWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal sizes of the WORK, RWORK @@ -417,9 +420,15 @@ SUBROUTINE CHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR. $ ( LIWORK.EQ.-1 ) ) * - LRWMIN = MAX( 1, 24*N ) - LIWMIN = MAX( 1, 10*N ) - LWMIN = MAX( 1, 2*N ) + IF( N.LE.1 ) THEN + LWMIN = 1 + LRWMIN = 1 + LIWMIN = 1 + ELSE + LWMIN = 2*N + LRWMIN = 24*N + LIWMIN = 10*N + END IF * INFO = 0 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN @@ -454,8 +463,8 @@ SUBROUTINE CHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 ) NB = MAX( NB, ILAENV( 1, 'CUNMTR', UPLO, N, -1, -1, -1 ) ) LWKOPT = MAX( ( NB+1 )*N, LWMIN ) - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) - RWORK( 1 ) = LRWMIN + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) + RWORK( 1 ) = SROUNDUP_LWORK( LRWMIN ) IWORK( 1 ) = LIWMIN * IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN @@ -483,7 +492,7 @@ SUBROUTINE CHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, END IF * IF( N.EQ.1 ) THEN - WORK( 1 ) = 2 + WORK( 1 ) = 1 IF( ALLEIG .OR. INDEIG ) THEN M = 1 W( 1 ) = REAL( A( 1, 1 ) ) @@ -710,8 +719,8 @@ SUBROUTINE CHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, * * Set WORK(1) to optimal workspace size. * - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) - RWORK( 1 ) = LRWMIN + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) + RWORK( 1 ) = SROUNDUP_LWORK( LRWMIN ) IWORK( 1 ) = LIWMIN * RETURN diff --git a/lapack-netlib/SRC/cheevr_2stage.f b/lapack-netlib/SRC/cheevr_2stage.f index 0332a09bcd..e06925fcd0 100644 --- a/lapack-netlib/SRC/cheevr_2stage.f +++ b/lapack-netlib/SRC/cheevr_2stage.f @@ -265,7 +265,7 @@ *> indicating the nonzero elements in Z. The i-th eigenvector *> is nonzero only in elements ISUPPZ( 2*i-1 ) through *> ISUPPZ( 2*i ). This is an output of CSTEMR (tridiagonal -*> matrix). The support of the eigenvectors of A is typically +*> matrix). The support of the eigenvectors of A is typically *> 1:N because of the unitary transformations applied by CUNMTR. *> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 *> \endverbatim @@ -279,12 +279,13 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. +*> If N <= 1, LWORK must be at least 1. *> If JOBZ = 'N' and N > 1, LWORK must be queried. *> LWORK = MAX(1, 26*N, dimension) where *> dimension = max(stage1,stage2) + (KD+1)*N + N -*> = N*KD + N*max(KD+1,FACTOPTNB) -*> + max(2*KD*KD, KD*NTHREADS) +*> = N*KD + N*max(KD+1,FACTOPTNB) +*> + max(2*KD*KD, KD*NTHREADS) *> + (KD+1)*N + N *> where KD is the blocking size of the reduction, *> FACTOPTNB is the blocking used by the QR or LQ @@ -310,7 +311,8 @@ *> \param[in] LRWORK *> \verbatim *> LRWORK is INTEGER -*> The length of the array RWORK. LRWORK >= max(1,24*N). +*> The length of the array RWORK. +*> If N <= 1, LRWORK >= 1, else LRWORK >= 24*N. *> *> If LRWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal sizes of the WORK, RWORK @@ -329,7 +331,8 @@ *> \param[in] LIWORK *> \verbatim *> LIWORK is INTEGER -*> The dimension of the array IWORK. LIWORK >= max(1,10*N). +*> The dimension of the array IWORK. +*> If N <= 1, LIWORK >= 1, else LIWORK >= 10*N. *> *> If LIWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal sizes of the WORK, RWORK @@ -354,7 +357,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complexHEeigen +*> \ingroup heevr_2stage * *> \par Contributors: * ================== @@ -382,7 +385,7 @@ *> http://doi.acm.org/10.1145/2063384.2063394 *> *> A. Haidar, J. Kurzak, P. Luszczek, 2013. -*> An improved parallel singular value algorithm and its implementation +*> An improved parallel singular value algorithm and its implementation *> for multicore hardware, In Proceedings of 2013 International Conference *> for High Performance Computing, Networking, Storage and Analysis (SC '13). *> Denver, Colorado, USA, 2013. @@ -390,11 +393,11 @@ *> http://doi.acm.org/10.1145/2503210.2503292 *> *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. -*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure +*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure *> calculations based on fine-grained memory aware tasks. *> International Journal of High Performance Computing Applications. *> Volume 28 Issue 2, Pages 196-209, May 2014. -*> http://hpc.sagepub.com/content/28/2/196 +*> http://hpc.sagepub.com/content/28/2/196 *> *> \endverbatim * @@ -443,8 +446,9 @@ SUBROUTINE CHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, * .. External Functions .. LOGICAL LSAME INTEGER ILAENV, ILAENV2STAGE - REAL SLAMCH, CLANSY - EXTERNAL LSAME, SLAMCH, CLANSY, ILAENV, ILAENV2STAGE + REAL SLAMCH, CLANSY, SROUNDUP_LWORK + EXTERNAL LSAME, SLAMCH, CLANSY, ILAENV, ILAENV2STAGE, + $ SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL SCOPY, SSCAL, SSTEBZ, SSTERF, XERBLA, CSSCAL, @@ -472,9 +476,16 @@ SUBROUTINE CHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IB = ILAENV2STAGE( 2, 'CHETRD_2STAGE', JOBZ, N, KD, -1, -1 ) LHTRD = ILAENV2STAGE( 3, 'CHETRD_2STAGE', JOBZ, N, KD, IB, -1 ) LWTRD = ILAENV2STAGE( 4, 'CHETRD_2STAGE', JOBZ, N, KD, IB, -1 ) - LWMIN = N + LHTRD + LWTRD - LRWMIN = MAX( 1, 24*N ) - LIWMIN = MAX( 1, 10*N ) +* + IF( N.LE.1 ) THEN + LWMIN = 1 + LRWMIN = 1 + LIWMIN = 1 + ELSE + LWMIN = N + LHTRD + LWTRD + LRWMIN = 24*N + LIWMIN = 10*N + END IF * INFO = 0 IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN @@ -506,8 +517,8 @@ SUBROUTINE CHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, END IF * IF( INFO.EQ.0 ) THEN - WORK( 1 ) = LWMIN - RWORK( 1 ) = LRWMIN + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) + RWORK( 1 ) = SROUNDUP_LWORK( LRWMIN ) IWORK( 1 ) = LIWMIN * IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN @@ -535,7 +546,7 @@ SUBROUTINE CHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, END IF * IF( N.EQ.1 ) THEN - WORK( 1 ) = 2 + WORK( 1 ) = 1 IF( ALLEIG .OR. INDEIG ) THEN M = 1 W( 1 ) = REAL( A( 1, 1 ) ) @@ -643,9 +654,9 @@ SUBROUTINE CHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, * * Call CHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form. * - CALL CHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, RWORK( INDRD ), + CALL CHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, RWORK( INDRD ), $ RWORK( INDRE ), WORK( INDTAU ), - $ WORK( INDHOUS ), LHTRD, + $ WORK( INDHOUS ), LHTRD, $ WORK( INDWK ), LLWORK, IINFO ) * * If all eigenvalues are desired @@ -666,7 +677,7 @@ SUBROUTINE CHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, CALL SCOPY( N-1, RWORK( INDRE ), 1, RWORK( INDREE ), 1 ) CALL SCOPY( N, RWORK( INDRD ), 1, RWORK( INDRDD ), 1 ) * - IF (ABSTOL .LE. TWO*N*EPS) THEN + IF ( ABSTOL .LE. TWO*N*EPS ) THEN TRYRAC = .TRUE. ELSE TRYRAC = .FALSE. @@ -765,8 +776,8 @@ SUBROUTINE CHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, * * Set WORK(1) to optimal workspace size. * - WORK( 1 ) = LWMIN - RWORK( 1 ) = LRWMIN + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) + RWORK( 1 ) = SROUNDUP_LWORK( LRWMIN ) IWORK( 1 ) = LIWMIN * RETURN diff --git a/lapack-netlib/SRC/cheevx.f b/lapack-netlib/SRC/cheevx.f index e91599a44e..a8a2bde630 100644 --- a/lapack-netlib/SRC/cheevx.f +++ b/lapack-netlib/SRC/cheevx.f @@ -348,14 +348,14 @@ SUBROUTINE CHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, IF( INFO.EQ.0 ) THEN IF( N.LE.1 ) THEN LWKMIN = 1 - WORK( 1 ) = LWKMIN + LWKOPT = 1 ELSE LWKMIN = 2*N NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 ) NB = MAX( NB, ILAENV( 1, 'CUNMTR', UPLO, N, -1, -1, -1 ) ) - LWKOPT = MAX( 1, ( NB + 1 )*N ) - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + LWKOPT = ( NB + 1 )*N END IF + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) $ INFO = -17 diff --git a/lapack-netlib/SRC/chesv_aa.f b/lapack-netlib/SRC/chesv_aa.f index 53ecc0a165..0f41c93321 100644 --- a/lapack-netlib/SRC/chesv_aa.f +++ b/lapack-netlib/SRC/chesv_aa.f @@ -177,7 +177,7 @@ SUBROUTINE CHESV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, * * .. Local Scalars .. LOGICAL LQUERY - INTEGER LWKOPT, LWKOPT_HETRF, LWKOPT_HETRS + INTEGER LWKMIN, LWKOPT, LWKOPT_HETRF, LWKOPT_HETRS * .. * .. External Functions .. LOGICAL LSAME @@ -197,6 +197,7 @@ SUBROUTINE CHESV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) + LWKMIN = MAX( 1, 2*N, 3*N-2 ) IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN @@ -207,18 +208,18 @@ SUBROUTINE CHESV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 - ELSE IF( LWORK.LT.MAX( 2*N, 3*N-2 ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -10 END IF * IF( INFO.EQ.0 ) THEN CALL CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, -1, INFO ) - LWKOPT_HETRF = INT( WORK(1) ) + LWKOPT_HETRF = INT( WORK( 1 ) ) CALL CHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, $ -1, INFO ) - LWKOPT_HETRS = INT( WORK(1) ) - LWKOPT = MAX( LWKOPT_HETRF, LWKOPT_HETRS ) - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + LWKOPT_HETRS = INT( WORK( 1 ) ) + LWKOPT = MAX( LWKMIN, LWKOPT_HETRF, LWKOPT_HETRS ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -240,7 +241,7 @@ SUBROUTINE CHESV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, * END IF * - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/chesv_aa_2stage.f b/lapack-netlib/SRC/chesv_aa_2stage.f index 12950c4af8..05ebd9253a 100644 --- a/lapack-netlib/SRC/chesv_aa_2stage.f +++ b/lapack-netlib/SRC/chesv_aa_2stage.f @@ -99,14 +99,14 @@ *> *> \param[out] TB *> \verbatim -*> TB is COMPLEX array, dimension (LTB) +*> TB is COMPLEX array, dimension (MAX(1,LTB)). *> On exit, details of the LU factorization of the band matrix. *> \endverbatim *> *> \param[in] LTB *> \verbatim *> LTB is INTEGER -*> The size of the array TB. LTB >= 4*N, internally +*> The size of the array TB. LTB >= MAX(1,4*N), internally *> used to select NB such that LTB >= (3*NB+1)*N. *> *> If LTB = -1, then a workspace query is assumed; the @@ -146,14 +146,15 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX workspace of size LWORK +*> WORK is COMPLEX workspace of size (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The size of WORK. LWORK >= N, internally used to select NB -*> such that LWORK >= N*NB. +*> The size of WORK. LWORK >= MAX(1,N), internally used to +*> select NB such that LWORK >= N*NB. *> *> If LWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal size of the WORK array, @@ -203,7 +204,7 @@ SUBROUTINE CHESV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, * * .. Local Scalars .. LOGICAL UPPER, TQUERY, WQUERY - INTEGER LWKOPT + INTEGER LWKMIN, LWKOPT * .. * .. External Functions .. LOGICAL LSAME @@ -225,6 +226,7 @@ SUBROUTINE CHESV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, UPPER = LSAME( UPLO, 'U' ) WQUERY = ( LWORK.EQ.-1 ) TQUERY = ( LTB.EQ.-1 ) + LWKMIN = MAX( 1, N ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN @@ -233,18 +235,19 @@ SUBROUTINE CHESV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 - ELSE IF( LTB.LT.( 4*N ) .AND. .NOT.TQUERY ) THEN + ELSE IF( LTB.LT.MAX( 1, 4*N ) .AND. .NOT.TQUERY ) THEN INFO = -7 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -11 - ELSE IF( LWORK.LT.N .AND. .NOT.WQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.WQUERY ) THEN INFO = -13 END IF * IF( INFO.EQ.0 ) THEN CALL CHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, -1, IPIV, $ IPIV2, WORK, -1, INFO ) - LWKOPT = INT( WORK(1) ) + LWKOPT = MAX( LWKMIN, INT( WORK( 1 ) ) ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -254,7 +257,6 @@ SUBROUTINE CHESV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, RETURN END IF * -* * Compute the factorization A = U**H*T*U or A = L*T*L**H. * CALL CHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, IPIV2, @@ -268,7 +270,7 @@ SUBROUTINE CHESV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, * END IF * - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/chesvx.f b/lapack-netlib/SRC/chesvx.f index c23a35ce72..bdaad55ec1 100644 --- a/lapack-netlib/SRC/chesvx.f +++ b/lapack-netlib/SRC/chesvx.f @@ -307,7 +307,7 @@ SUBROUTINE CHESVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, * .. * .. Local Scalars .. LOGICAL LQUERY, NOFACT - INTEGER LWKOPT, NB + INTEGER LWKMIN, LWKOPT, NB REAL ANORM * .. * .. External Functions .. @@ -329,6 +329,7 @@ SUBROUTINE CHESVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, INFO = 0 NOFACT = LSAME( FACT, 'N' ) LQUERY = ( LWORK.EQ.-1 ) + LWKMIN = MAX( 1, 2*N ) IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN INFO = -1 ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) @@ -346,17 +347,17 @@ SUBROUTINE CHESVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, INFO = -11 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -13 - ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -18 END IF * IF( INFO.EQ.0 ) THEN - LWKOPT = MAX( 1, 2*N ) + LWKOPT = LWKMIN IF( NOFACT ) THEN NB = ILAENV( 1, 'CHETRF', UPLO, N, -1, -1, -1 ) LWKOPT = MAX( LWKOPT, N*NB ) END IF - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -405,7 +406,7 @@ SUBROUTINE CHESVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, IF( RCOND.LT.SLAMCH( 'Epsilon' ) ) $ INFO = N + 1 * - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/chetrd_2stage.f b/lapack-netlib/SRC/chetrd_2stage.f index f5ad35f277..ec70757980 100644 --- a/lapack-netlib/SRC/chetrd_2stage.f +++ b/lapack-netlib/SRC/chetrd_2stage.f @@ -4,23 +4,23 @@ * * =========== DOCUMENTATION =========== * -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ * *> \htmlonly -*> Download CHETRD_2STAGE + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> +*> Download CHETRD_2STAGE + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> *> [TXT] -*> \endhtmlonly +*> \endhtmlonly * * Definition: * =========== * -* SUBROUTINE CHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, +* SUBROUTINE CHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, * HOUS2, LHOUS2, WORK, LWORK, INFO ) * * IMPLICIT NONE @@ -34,7 +34,7 @@ * COMPLEX A( LDA, * ), TAU( * ), * HOUS2( * ), WORK( * ) * .. -* +* * *> \par Purpose: * ============= @@ -52,11 +52,11 @@ *> \param[in] VECT *> \verbatim *> VECT is CHARACTER*1 -*> = 'N': No need for the Housholder representation, +*> = 'N': No need for the Housholder representation, *> in particular for the second stage (Band to *> tridiagonal) and thus LHOUS2 is of size max(1, 4*N); -*> = 'V': the Householder representation is needed to -*> either generate Q1 Q2 or to apply Q1 Q2, +*> = 'V': the Householder representation is needed to +*> either generate Q1 Q2 or to apply Q1 Q2, *> then LHOUS2 is to be queried and computed. *> (NOT AVAILABLE IN THIS RELEASE). *> \endverbatim @@ -86,7 +86,7 @@ *> triangular part of A is not referenced. *> On exit, if UPLO = 'U', the band superdiagonal *> of A are overwritten by the corresponding elements of the -*> internal band-diagonal matrix AB, and the elements above +*> internal band-diagonal matrix AB, and the elements above *> the KD superdiagonal, with the array TAU, represent the unitary *> matrix Q1 as a product of elementary reflectors; if UPLO *> = 'L', the diagonal and band subdiagonal of A are over- @@ -117,13 +117,13 @@ *> \param[out] TAU *> \verbatim *> TAU is COMPLEX array, dimension (N-KD) -*> The scalar factors of the elementary reflectors of +*> The scalar factors of the elementary reflectors of *> the first stage (see Further Details). *> \endverbatim *> *> \param[out] HOUS2 *> \verbatim -*> HOUS2 is COMPLEX array, dimension (LHOUS2) +*> HOUS2 is COMPLEX array, dimension (MAX(1,LHOUS2)) *> Stores the Householder representation of the stage2 *> band to tridiagonal. *> \endverbatim @@ -132,6 +132,8 @@ *> \verbatim *> LHOUS2 is INTEGER *> The dimension of the array HOUS2. +*> LHOUS2 >= 1. +*> *> If LWORK = -1, or LHOUS2=-1, *> then a query is assumed; the routine *> only calculates the optimal size of the HOUS2 array, returns @@ -143,13 +145,16 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX array, dimension (LWORK) +*> WORK is COMPLEX array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK = MAX(1, dimension) +*> The dimension of the array WORK. +*> If N = 0, LWORK >= 1, else LWORK = MAX(1, dimension). +*> *> If LWORK = -1, or LHOUS2 = -1, *> then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -157,9 +162,9 @@ *> message related to LWORK is issued by XERBLA. *> LWORK = MAX(1, dimension) where *> dimension = max(stage1,stage2) + (KD+1)*N -*> = N*KD + N*max(KD+1,FACTOPTNB) -*> + max(2*KD*KD, KD*NTHREADS) -*> + (KD+1)*N +*> = N*KD + N*max(KD+1,FACTOPTNB) +*> + max(2*KD*KD, KD*NTHREADS) +*> + (KD+1)*N *> where KD is the blocking size of the reduction, *> FACTOPTNB is the blocking used by the QR or LQ *> algorithm, usually FACTOPTNB=128 is a good choice @@ -177,12 +182,12 @@ * Authors: * ======== * -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. * -*> \ingroup complexHEcomputational +*> \ingroup hetrd_2stage * *> \par Further Details: * ===================== @@ -202,7 +207,7 @@ *> http://doi.acm.org/10.1145/2063384.2063394 *> *> A. Haidar, J. Kurzak, P. Luszczek, 2013. -*> An improved parallel singular value algorithm and its implementation +*> An improved parallel singular value algorithm and its implementation *> for multicore hardware, In Proceedings of 2013 International Conference *> for High Performance Computing, Networking, Storage and Analysis (SC '13). *> Denver, Colorado, USA, 2013. @@ -210,16 +215,16 @@ *> http://doi.acm.org/10.1145/2503210.2503292 *> *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. -*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure +*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure *> calculations based on fine-grained memory aware tasks. *> International Journal of High Performance Computing Applications. *> Volume 28 Issue 2, Pages 196-209, May 2014. -*> http://hpc.sagepub.com/content/28/2/196 +*> http://hpc.sagepub.com/content/28/2/196 *> *> \endverbatim *> * ===================================================================== - SUBROUTINE CHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, + SUBROUTINE CHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, $ HOUS2, LHOUS2, WORK, LWORK, INFO ) * IMPLICIT NONE @@ -250,7 +255,8 @@ SUBROUTINE CHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, * .. External Functions .. LOGICAL LSAME INTEGER ILAENV2STAGE - EXTERNAL LSAME, ILAENV2STAGE + REAL SROUNDUP_LWORK + EXTERNAL LSAME, ILAENV2STAGE, SROUNDUP_LWORK * .. * .. Executable Statements .. * @@ -265,10 +271,13 @@ SUBROUTINE CHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, * KD = ILAENV2STAGE( 1, 'CHETRD_2STAGE', VECT, N, -1, -1, -1 ) IB = ILAENV2STAGE( 2, 'CHETRD_2STAGE', VECT, N, KD, -1, -1 ) - LHMIN = ILAENV2STAGE( 3, 'CHETRD_2STAGE', VECT, N, KD, IB, -1 ) - LWMIN = ILAENV2STAGE( 4, 'CHETRD_2STAGE', VECT, N, KD, IB, -1 ) -* WRITE(*,*),'CHETRD_2STAGE N KD UPLO LHMIN LWMIN ',N, KD, UPLO, -* $ LHMIN, LWMIN + IF( N.EQ.0 ) THEN + LHMIN = 1 + LWMIN = 1 + ELSE + LHMIN = ILAENV2STAGE( 3, 'CHETRD_2STAGE', VECT, N, KD, IB, -1 ) + LWMIN = ILAENV2STAGE( 4, 'CHETRD_2STAGE', VECT, N, KD, IB, -1 ) + END IF * IF( .NOT.LSAME( VECT, 'N' ) ) THEN INFO = -1 @@ -285,8 +294,8 @@ SUBROUTINE CHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, END IF * IF( INFO.EQ.0 ) THEN - HOUS2( 1 ) = LHMIN - WORK( 1 ) = LWMIN + HOUS2( 1 ) = SROUNDUP_LWORK( LHMIN ) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) END IF * IF( INFO.NE.0 ) THEN @@ -309,14 +318,14 @@ SUBROUTINE CHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, LWRK = LWORK-LDAB*N ABPOS = 1 WPOS = ABPOS + LDAB*N - CALL CHETRD_HE2HB( UPLO, N, KD, A, LDA, WORK( ABPOS ), LDAB, + CALL CHETRD_HE2HB( UPLO, N, KD, A, LDA, WORK( ABPOS ), LDAB, $ TAU, WORK( WPOS ), LWRK, INFO ) IF( INFO.NE.0 ) THEN CALL XERBLA( 'CHETRD_HE2HB', -INFO ) RETURN END IF - CALL CHETRD_HB2ST( 'Y', VECT, UPLO, N, KD, - $ WORK( ABPOS ), LDAB, D, E, + CALL CHETRD_HB2ST( 'Y', VECT, UPLO, N, KD, + $ WORK( ABPOS ), LDAB, D, E, $ HOUS2, LHOUS2, WORK( WPOS ), LWRK, INFO ) IF( INFO.NE.0 ) THEN CALL XERBLA( 'CHETRD_HB2ST', -INFO ) @@ -324,8 +333,7 @@ SUBROUTINE CHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, END IF * * - HOUS2( 1 ) = LHMIN - WORK( 1 ) = LWMIN + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN * * End of CHETRD_2STAGE diff --git a/lapack-netlib/SRC/chetrd_hb2st.F b/lapack-netlib/SRC/chetrd_hb2st.F index 3688e40a3d..b0d3e45fbf 100644 --- a/lapack-netlib/SRC/chetrd_hb2st.F +++ b/lapack-netlib/SRC/chetrd_hb2st.F @@ -132,15 +132,17 @@ *> *> \param[out] HOUS *> \verbatim -*> HOUS is COMPLEX array, dimension LHOUS, that -*> store the Householder representation. +*> HOUS is COMPLEX array, dimension (MAX(1,LHOUS)) +*> Stores the Householder representation. *> \endverbatim *> *> \param[in] LHOUS *> \verbatim *> LHOUS is INTEGER -*> The dimension of the array HOUS. LHOUS = MAX(1, dimension) -*> If LWORK = -1, or LHOUS=-1, +*> The dimension of the array HOUS. +*> If N = 0 or KD <= 1, LHOUS >= 1, else LHOUS = MAX(1, dimension). +*> +*> If LWORK = -1, or LHOUS = -1, *> then a query is assumed; the routine *> only calculates the optimal size of the HOUS array, returns *> this value as the first entry of the HOUS array, and no error @@ -152,14 +154,17 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX array, dimension LWORK. +*> WORK is COMPLEX array, dimension (MAX(1,LWORK)). +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK = MAX(1, dimension) -*> If LWORK = -1, or LHOUS=-1, +*> The dimension of the array WORK. +*> If N = 0 or KD <= 1, LWORK >= 1, else LWORK = MAX(1, dimension). +*> +*> If LWORK = -1, or LHOUS = -1, *> then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error @@ -262,7 +267,7 @@ SUBROUTINE CHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, INTEGER I, M, K, IB, SWEEPID, MYID, SHIFT, STT, ST, $ ED, STIND, EDIND, BLKLASTIND, COLPT, THED, $ STEPERCOL, GRSIZ, THGRSIZ, THGRNB, THGRID, - $ NBTILES, TTYPE, TID, NTHREADS, DEBUG, + $ NBTILES, TTYPE, TID, NTHREADS, $ ABDPOS, ABOFDPOS, DPOS, OFDPOS, AWPOS, $ INDA, INDW, APOS, SIZEA, LDA, INDV, INDTAU, $ SICEV, SIZETAU, LDV, LHMIN, LWMIN @@ -286,7 +291,6 @@ SUBROUTINE CHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * Determine the minimal workspace size required. * Test the input parameters * - DEBUG = 0 INFO = 0 AFTERS1 = LSAME( STAGE1, 'Y' ) WANTQ = LSAME( VECT, 'V' ) @@ -295,9 +299,14 @@ SUBROUTINE CHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * * Determine the block size, the workspace size and the hous size. * - IB = ILAENV2STAGE( 2, 'CHETRD_HB2ST', VECT, N, KD, -1, -1 ) - LHMIN = ILAENV2STAGE( 3, 'CHETRD_HB2ST', VECT, N, KD, IB, -1 ) - LWMIN = ILAENV2STAGE( 4, 'CHETRD_HB2ST', VECT, N, KD, IB, -1 ) + IB = ILAENV2STAGE( 2, 'CHETRD_HB2ST', VECT, N, KD, -1, -1 ) + IF( N.EQ.0 .OR. KD.LE.1 ) THEN + LHMIN = 1 + LWMIN = 1 + ELSE + LHMIN = ILAENV2STAGE( 3, 'CHETRD_HB2ST', VECT, N, KD, IB, -1 ) + LWMIN = ILAENV2STAGE( 4, 'CHETRD_HB2ST', VECT, N, KD, IB, -1 ) + END IF * IF( .NOT.AFTERS1 .AND. .NOT.LSAME( STAGE1, 'N' ) ) THEN INFO = -1 @@ -318,8 +327,8 @@ SUBROUTINE CHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, END IF * IF( INFO.EQ.0 ) THEN - HOUS( 1 ) = LHMIN - WORK( 1 ) = SROUNDUP_LWORK(LWMIN) + HOUS( 1 ) = SROUNDUP_LWORK( LHMIN ) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) END IF * IF( INFO.NE.0 ) THEN @@ -575,8 +584,7 @@ SUBROUTINE CHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, 170 CONTINUE ENDIF * - HOUS( 1 ) = LHMIN - WORK( 1 ) = SROUNDUP_LWORK(LWMIN) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN * * End of CHETRD_HB2ST diff --git a/lapack-netlib/SRC/chetrd_he2hb.f b/lapack-netlib/SRC/chetrd_he2hb.f index 090f021009..42e71e0b20 100644 --- a/lapack-netlib/SRC/chetrd_he2hb.f +++ b/lapack-netlib/SRC/chetrd_he2hb.f @@ -123,8 +123,8 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX array, dimension (LWORK) -*> On exit, if INFO = 0, or if LWORK=-1, +*> WORK is COMPLEX array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, or if LWORK = -1, *> WORK(1) returns the size of LWORK. *> \endverbatim *> @@ -132,7 +132,9 @@ *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK which should be calculated -*> by a workspace query. LWORK = MAX(1, LWORK_QUERY) +*> by a workspace query. +*> If N <= KD+1, LWORK >= 1, else LWORK = MAX(1, LWORK_QUERY). +*> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error @@ -294,8 +296,12 @@ SUBROUTINE CHETRD_HE2HB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) - LWMIN = ILAENV2STAGE( 4, 'CHETRD_HE2HB', '', N, KD, -1, -1 ) - + IF( N.LE.KD+1 ) THEN + LWMIN = 1 + ELSE + LWMIN = ILAENV2STAGE( 4, 'CHETRD_HE2HB', '', N, KD, -1, -1 ) + END IF +* IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN @@ -314,7 +320,7 @@ SUBROUTINE CHETRD_HE2HB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, CALL XERBLA( 'CHETRD_HE2HB', -INFO ) RETURN ELSE IF( LQUERY ) THEN - WORK( 1 ) = SROUNDUP_LWORK(LWMIN) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN END IF * @@ -507,7 +513,7 @@ SUBROUTINE CHETRD_HE2HB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, END IF * - WORK( 1 ) = SROUNDUP_LWORK(LWMIN) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN * * End of CHETRD_HE2HB diff --git a/lapack-netlib/SRC/chetrf.f b/lapack-netlib/SRC/chetrf.f index 0c596ffe7c..2836e30bcc 100644 --- a/lapack-netlib/SRC/chetrf.f +++ b/lapack-netlib/SRC/chetrf.f @@ -107,7 +107,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >=1. For best performance +*> The length of WORK. LWORK >= 1. For best performance *> LWORK >= N*NB, where NB is the block size returned by ILAENV. *> \endverbatim *> @@ -228,8 +228,8 @@ SUBROUTINE CHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) * Determine the block size * NB = ILAENV( 1, 'CHETRF', UPLO, N, -1, -1, -1 ) - LWKOPT = N*NB - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + LWKOPT = MAX( 1, N*NB ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -347,7 +347,7 @@ SUBROUTINE CHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) END IF * 40 CONTINUE - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN * * End of CHETRF diff --git a/lapack-netlib/SRC/chetrf_aa.f b/lapack-netlib/SRC/chetrf_aa.f index 0547a4eab3..51410a6ed7 100644 --- a/lapack-netlib/SRC/chetrf_aa.f +++ b/lapack-netlib/SRC/chetrf_aa.f @@ -101,8 +101,10 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >= 2*N. For optimum performance -*> LWORK >= N*(1+NB), where NB is the optimal blocksize. +*> The length of WORK. +*> LWORK >= 1, if N <= 1, and LWORK >= 2*N, otherwise. +*> For optimum performance LWORK >= N*(1+NB), where NB is +*> the optimal blocksize, returned by ILAENV. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -128,7 +130,7 @@ *> \ingroup hetrf_aa * * ===================================================================== - SUBROUTINE CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) + SUBROUTINE CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- @@ -152,7 +154,7 @@ SUBROUTINE CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) * * .. Local Scalars .. LOGICAL LQUERY, UPPER - INTEGER J, LWKOPT + INTEGER J, LWKMIN, LWKOPT INTEGER NB, MJ, NJ, K1, K2, J1, J2, J3, JB COMPLEX ALPHA * .. @@ -179,19 +181,26 @@ SUBROUTINE CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) + IF( N.LE.1 ) THEN + LWKMIN = 1 + LWKOPT = 1 + ELSE + LWKMIN = 2*N + LWKOPT = (NB+1)*N + END IF +* IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.( 2*N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -7 END IF * IF( INFO.EQ.0 ) THEN - LWKOPT = (NB+1)*N - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -203,11 +212,11 @@ SUBROUTINE CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) * * Quick return * - IF ( N.EQ.0 ) THEN + IF( N.EQ.0 ) THEN RETURN ENDIF IPIV( 1 ) = 1 - IF ( N.EQ.1 ) THEN + IF( N.EQ.1 ) THEN A( 1, 1 ) = REAL( A( 1, 1 ) ) RETURN END IF @@ -460,7 +469,7 @@ SUBROUTINE CHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) END IF * 20 CONTINUE - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN * * End of CHETRF_AA diff --git a/lapack-netlib/SRC/chetrf_aa_2stage.f b/lapack-netlib/SRC/chetrf_aa_2stage.f index 400efdf261..a79343753b 100644 --- a/lapack-netlib/SRC/chetrf_aa_2stage.f +++ b/lapack-netlib/SRC/chetrf_aa_2stage.f @@ -87,14 +87,14 @@ *> *> \param[out] TB *> \verbatim -*> TB is COMPLEX array, dimension (LTB) +*> TB is COMPLEX array, dimension (MAX(1,LTB)) *> On exit, details of the LU factorization of the band matrix. *> \endverbatim *> *> \param[in] LTB *> \verbatim *> LTB is INTEGER -*> The size of the array TB. LTB >= 4*N, internally +*> The size of the array TB. LTB >= MAX(1,4*N), internally *> used to select NB such that LTB >= (3*NB+1)*N. *> *> If LTB = -1, then a workspace query is assumed; the @@ -121,14 +121,14 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX workspace of size LWORK +*> WORK is COMPLEX workspace of size (MAX(1,LWORK)) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The size of WORK. LWORK >= N, internally used to select NB -*> such that LWORK >= N*NB. +*> The size of WORK. LWORK >= MAX(1,N), internally used +*> to select NB such that LWORK >= N*NB. *> *> If LWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal size of the WORK array, @@ -152,7 +152,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complexSYcomputational +*> \ingroup hetrf_aa_2stage * * ===================================================================== SUBROUTINE CHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, @@ -188,7 +188,8 @@ SUBROUTINE CHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, * .. External Functions .. LOGICAL LSAME INTEGER ILAENV - EXTERNAL LSAME, ILAENV + REAL SROUNDUP_LWORK + EXTERNAL LSAME, ILAENV, SROUNDUP_LWORK * .. * .. External Subroutines .. @@ -213,9 +214,9 @@ SUBROUTINE CHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF ( LTB .LT. 4*N .AND. .NOT.TQUERY ) THEN + ELSE IF( LTB.LT.MAX( 1, 4*N ) .AND. .NOT.TQUERY ) THEN INFO = -6 - ELSE IF ( LWORK .LT. N .AND. .NOT.WQUERY ) THEN + ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.WQUERY ) THEN INFO = -10 END IF * @@ -229,10 +230,10 @@ SUBROUTINE CHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, NB = ILAENV( 1, 'CHETRF_AA_2STAGE', UPLO, N, -1, -1, -1 ) IF( INFO.EQ.0 ) THEN IF( TQUERY ) THEN - TB( 1 ) = (3*NB+1)*N + TB( 1 ) = SROUNDUP_LWORK( MAX( 1, (3*NB+1)*N ) ) END IF IF( WQUERY ) THEN - WORK( 1 ) = N*NB + WORK( 1 ) = SROUNDUP_LWORK( MAX( 1, N*NB ) ) END IF END IF IF( TQUERY .OR. WQUERY ) THEN @@ -241,7 +242,7 @@ SUBROUTINE CHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, * * Quick return * - IF ( N.EQ.0 ) THEN + IF( N.EQ.0 ) THEN RETURN ENDIF * diff --git a/lapack-netlib/SRC/chetrf_rk.f b/lapack-netlib/SRC/chetrf_rk.f index ef442c9378..a13c740e3c 100644 --- a/lapack-netlib/SRC/chetrf_rk.f +++ b/lapack-netlib/SRC/chetrf_rk.f @@ -177,14 +177,14 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX array, dimension ( MAX(1,LWORK) ). +*> WORK is COMPLEX array, dimension (MAX(1,LWORK)). *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >=1. For best performance +*> The length of WORK. LWORK >= 1. For best performance *> LWORK >= N*NB, where NB is the block size returned *> by ILAENV. *> @@ -311,8 +311,8 @@ SUBROUTINE CHETRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, * Determine the block size * NB = ILAENV( 1, 'CHETRF_RK', UPLO, N, -1, -1, -1 ) - LWKOPT = N*NB - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + LWKOPT = MAX( 1, N*NB ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -488,7 +488,7 @@ SUBROUTINE CHETRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, * END IF * - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN * * End of CHETRF_RK diff --git a/lapack-netlib/SRC/chetrf_rook.f b/lapack-netlib/SRC/chetrf_rook.f index 1593c2edca..df0323520b 100644 --- a/lapack-netlib/SRC/chetrf_rook.f +++ b/lapack-netlib/SRC/chetrf_rook.f @@ -122,7 +122,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >=1. For best performance +*> The length of WORK. LWORK >= 1. For best performance *> LWORK >= N*NB, where NB is the block size returned by ILAENV. *> *> If LWORK = -1, then a workspace query is assumed; the routine @@ -264,7 +264,7 @@ SUBROUTINE CHETRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) * NB = ILAENV( 1, 'CHETRF_ROOK', UPLO, N, -1, -1, -1 ) LWKOPT = MAX( 1, N*NB ) - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -387,7 +387,7 @@ SUBROUTINE CHETRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) END IF * 40 CONTINUE - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN * * End of CHETRF_ROOK diff --git a/lapack-netlib/SRC/chetri2.f b/lapack-netlib/SRC/chetri2.f index 2865a6440f..f15065ae7d 100644 --- a/lapack-netlib/SRC/chetri2.f +++ b/lapack-netlib/SRC/chetri2.f @@ -88,16 +88,16 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX array, dimension (N+NB+1)*(NB+3) +*> WORK is COMPLEX array, dimension (MAX(1,LWORK)) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. -*> WORK is size >= (N+NB+1)*(NB+3) +*> If N = 0, LWORK >= 1, else LWORK >= (N+NB+1)*(NB+3). *> If LWORK = -1, then a workspace query is assumed; the routine -*> calculates: +*> calculates: *> - the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, *> - and no error message related to LWORK is issued by XERBLA. @@ -120,7 +120,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complexHEcomputational +*> \ingroup hetri2 * * ===================================================================== SUBROUTINE CHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) @@ -147,7 +147,8 @@ SUBROUTINE CHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) * .. External Functions .. LOGICAL LSAME INTEGER ILAENV - EXTERNAL LSAME, ILAENV + REAL SROUNDUP_LWORK + EXTERNAL LSAME, ILAENV, SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL CHETRI2X, CHETRI, XERBLA @@ -159,9 +160,13 @@ SUBROUTINE CHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) +* * Get blocksize +* NBMAX = ILAENV( 1, 'CHETRF', UPLO, N, -1, -1, -1 ) - IF ( NBMAX .GE. N ) THEN + IF( N.EQ.0 ) THEN + MINSIZE = 1 + ELSE IF( NBMAX.GE.N ) THEN MINSIZE = N ELSE MINSIZE = (N+NBMAX+1)*(NBMAX+3) @@ -173,28 +178,29 @@ SUBROUTINE CHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF (LWORK .LT. MINSIZE .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.MINSIZE .AND. .NOT.LQUERY ) THEN INFO = -7 END IF -* -* Quick return if possible -* * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CHETRI2', -INFO ) RETURN ELSE IF( LQUERY ) THEN - WORK(1)=MINSIZE + WORK( 1 ) = SROUNDUP_LWORK( MINSIZE ) RETURN END IF +* +* Quick return if possible +* IF( N.EQ.0 ) $ RETURN - IF( NBMAX .GE. N ) THEN + IF( NBMAX.GE.N ) THEN CALL CHETRI( UPLO, N, A, LDA, IPIV, WORK, INFO ) ELSE CALL CHETRI2X( UPLO, N, A, LDA, IPIV, WORK, NBMAX, INFO ) END IF +* RETURN * * End of CHETRI2 diff --git a/lapack-netlib/SRC/chetri_3.f b/lapack-netlib/SRC/chetri_3.f index deda635983..ccfce5070b 100644 --- a/lapack-netlib/SRC/chetri_3.f +++ b/lapack-netlib/SRC/chetri_3.f @@ -119,16 +119,17 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX array, dimension (N+NB+1)*(NB+3). +*> WORK is COMPLEX array, dimension (MAX(1,LWORK)). *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >= (N+NB+1)*(NB+3). +*> The length of WORK. +*> If N = 0, LWORK >= 1, else LWORK >= (N+NB+1)*(NB+3). *> -*> If LDWORK = -1, then a workspace query is assumed; +*> If LWORK = -1, then a workspace query is assumed; *> the routine only calculates the optimal size of the optimal *> size of the WORK array, returns this value as the first *> entry of the WORK array, and no error message related to @@ -209,8 +210,13 @@ SUBROUTINE CHETRI_3( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, * * Determine the block size * - NB = MAX( 1, ILAENV( 1, 'CHETRI_3', UPLO, N, -1, -1, -1 ) ) - LWKOPT = ( N+NB+1 ) * ( NB+3 ) + IF( N.EQ.0 ) THEN + LWKOPT = 1 + ELSE + NB = MAX( 1, ILAENV( 1, 'CHETRI_3', UPLO, N, -1, -1, -1 ) ) + LWKOPT = ( N+NB+1 ) * ( NB+3 ) + END IF + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 @@ -218,7 +224,7 @@ SUBROUTINE CHETRI_3( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF ( LWORK .LT. LWKOPT .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKOPT .AND. .NOT.LQUERY ) THEN INFO = -8 END IF * @@ -226,7 +232,6 @@ SUBROUTINE CHETRI_3( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, CALL XERBLA( 'CHETRI_3', -INFO ) RETURN ELSE IF( LQUERY ) THEN - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) RETURN END IF * @@ -237,7 +242,7 @@ SUBROUTINE CHETRI_3( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, * CALL CHETRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO ) * - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/chetrs_aa.f b/lapack-netlib/SRC/chetrs_aa.f index 8795491064..07179ab923 100644 --- a/lapack-netlib/SRC/chetrs_aa.f +++ b/lapack-netlib/SRC/chetrs_aa.f @@ -105,7 +105,13 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,3*N-2). +*> The dimension of the array WORK. +*> If MIN(N,NRHS) = 0, LWORK >= 1, else LWORK >= 3*N-2. +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the minimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO @@ -151,24 +157,30 @@ SUBROUTINE CHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, * .. * .. Local Scalars .. LOGICAL LQUERY, UPPER - INTEGER K, KP, LWKOPT + INTEGER K, KP, LWKMIN * .. * .. External Functions .. LOGICAL LSAME REAL SROUNDUP_LWORK - EXTERNAL LSAME,SROUNDUP_LWORK + EXTERNAL LSAME, SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL CLACPY, CLACGV, CGTSV, CSWAP, CTRSM, XERBLA * .. * .. Intrinsic Functions .. - INTRINSIC MAX + INTRINSIC MIN, MAX * .. * .. Executable Statements .. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) + IF( MIN( N, NRHS ).EQ.0 ) THEN + LWKMIN = 1 + ELSE + LWKMIN = 3*N-2 + END IF +* IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN @@ -179,21 +191,20 @@ SUBROUTINE CHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 - ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -10 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CHETRS_AA', -INFO ) RETURN ELSE IF( LQUERY ) THEN - LWKOPT = (3*N-2) - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKMIN ) RETURN END IF * * Quick return if possible * - IF( N.EQ.0 .OR. NRHS.EQ.0 ) + IF( MIN( N, NRHS ).EQ.0 ) $ RETURN * IF( UPPER ) THEN diff --git a/lapack-netlib/SRC/clamswlq.f b/lapack-netlib/SRC/clamswlq.f index 5daf60bf67..8f474a3abb 100644 --- a/lapack-netlib/SRC/clamswlq.f +++ b/lapack-netlib/SRC/clamswlq.f @@ -127,17 +127,20 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) +*> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. -*> If SIDE = 'L', LWORK >= max(1,NB) * MB; -*> if SIDE = 'R', LWORK >= max(1,M) * MB. +*> If MIN(M,N,K) = 0, LWORK >= 1. +*> If SIDE = 'L', LWORK >= max(1,NB*MB). +*> If SIDE = 'R', LWORK >= max(1,M*MB). +*> *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim @@ -193,91 +196,100 @@ *> * ===================================================================== SUBROUTINE CLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, - $ LDT, C, LDC, WORK, LWORK, INFO ) + $ LDT, C, LDC, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. - CHARACTER SIDE, TRANS - INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC + CHARACTER SIDE, TRANS + INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC * .. * .. Array Arguments .. - COMPLEX A( LDA, * ), WORK( * ), C(LDC, * ), - $ T( LDT, * ) + COMPLEX A( LDA, * ), WORK( * ), C( LDC, * ), + $ T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER I, II, KK, LW, CTR + LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY + INTEGER I, II, KK, LW, CTR, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME REAL SROUNDUP_LWORK EXTERNAL LSAME, SROUNDUP_LWORK +* .. * .. External Subroutines .. - EXTERNAL CTPMLQT, CGEMLQT, XERBLA + EXTERNAL CTPMLQT, CGEMLQT, XERBLA * .. * .. Executable Statements .. * * Test the input arguments * - LQUERY = LWORK.LT.0 + INFO = 0 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'C' ) LEFT = LSAME( SIDE, 'L' ) RIGHT = LSAME( SIDE, 'R' ) - IF (LEFT) THEN + IF( LEFT ) THEN LW = N * MB ELSE LW = M * MB END IF * - INFO = 0 + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF +* IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN - INFO = -1 + INFO = -1 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN - INFO = -2 + INFO = -2 ELSE IF( K.LT.0 ) THEN INFO = -5 ELSE IF( M.LT.K ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 - ELSE IF( K.LT.MB .OR. MB.LT.1) THEN + ELSE IF( K.LT.MB .OR. MB.LT.1 ) THEN INFO = -6 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN INFO = -9 - ELSE IF( LDT.LT.MAX( 1, MB) ) THEN + ELSE IF( LDT.LT.MAX( 1, MB ) ) THEN INFO = -11 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN - INFO = -13 - ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN + INFO = -13 + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -15 END IF * + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) + END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CLAMSWLQ', -INFO ) - WORK(1) = SROUNDUP_LWORK(LW) RETURN - ELSE IF (LQUERY) THEN - WORK(1) = SROUNDUP_LWORK(LW) + ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * - IF( MIN(M,N,K).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF * IF((NB.LE.K).OR.(NB.GE.MAX(M,N,K))) THEN CALL CGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA, - $ T, LDT, C, LDC, WORK, INFO) + $ T, LDT, C, LDC, WORK, INFO ) RETURN END IF * @@ -404,7 +416,7 @@ SUBROUTINE CLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, * END IF * - WORK(1) = SROUNDUP_LWORK(LW) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN * * End of CLAMSWLQ diff --git a/lapack-netlib/SRC/clamtsqr.f b/lapack-netlib/SRC/clamtsqr.f index 05021e642b..13625087f0 100644 --- a/lapack-netlib/SRC/clamtsqr.f +++ b/lapack-netlib/SRC/clamtsqr.f @@ -128,22 +128,24 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) -*> +*> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim +*> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. +*> If MIN(M,N,K) = 0, LWORK >= 1. +*> If SIDE = 'L', LWORK >= max(1,N*NB). +*> If SIDE = 'R', LWORK >= max(1,MB*NB). *> -*> If SIDE = 'L', LWORK >= max(1,N)*NB; -*> if SIDE = 'R', LWORK >= max(1,MB)*NB. *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. -*> *> \endverbatim +*> *> \param[out] INFO *> \verbatim *> INFO is INTEGER @@ -195,45 +197,47 @@ *> * ===================================================================== SUBROUTINE CLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, - $ LDT, C, LDC, WORK, LWORK, INFO ) + $ LDT, C, LDC, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. - CHARACTER SIDE, TRANS - INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC + CHARACTER SIDE, TRANS + INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC * .. * .. Array Arguments .. - COMPLEX A( LDA, * ), WORK( * ), C(LDC, * ), - $ T( LDT, * ) + COMPLEX A( LDA, * ), WORK( * ), C( LDC, * ), + $ T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER I, II, KK, LW, CTR, Q + LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY + INTEGER I, II, KK, LW, CTR, Q, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME REAL SROUNDUP_LWORK EXTERNAL LSAME, SROUNDUP_LWORK +* .. * .. External Subroutines .. - EXTERNAL CGEMQRT, CTPMQRT, XERBLA + EXTERNAL CGEMQRT, CTPMQRT, XERBLA * .. * .. Executable Statements .. * * Test the input arguments * - LQUERY = LWORK.LT.0 + INFO = 0 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'C' ) LEFT = LSAME( SIDE, 'L' ) RIGHT = LSAME( SIDE, 'R' ) - IF (LEFT) THEN + IF( LEFT ) THEN LW = N * NB Q = M ELSE @@ -241,11 +245,17 @@ SUBROUTINE CLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, Q = N END IF * - INFO = 0 + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF +* IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN - INFO = -1 + INFO = -1 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN - INFO = -2 + INFO = -2 ELSE IF( M.LT.K ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN @@ -256,38 +266,38 @@ SUBROUTINE CLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, INFO = -7 ELSE IF( LDA.LT.MAX( 1, Q ) ) THEN INFO = -9 - ELSE IF( LDT.LT.MAX( 1, NB) ) THEN + ELSE IF( LDT.LT.MAX( 1, NB ) ) THEN INFO = -11 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN - INFO = -13 - ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN + INFO = -13 + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -15 END IF * -* Determine the block size if it is tall skinny or short and wide -* - IF( INFO.EQ.0) THEN - WORK(1) = SROUNDUP_LWORK(LW) + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CLAMTSQR', -INFO ) RETURN - ELSE IF (LQUERY) THEN - RETURN + ELSE IF( LQUERY ) THEN + RETURN END IF * * Quick return if possible * - IF( MIN(M,N,K).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF +* +* Determine the block size if it is tall skinny or short and wide * IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN CALL CGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA, - $ T, LDT, C, LDC, WORK, INFO) + $ T, LDT, C, LDC, WORK, INFO ) RETURN - END IF + END IF * IF(LEFT.AND.NOTRAN) THEN * @@ -412,7 +422,7 @@ SUBROUTINE CLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, * END IF * - WORK(1) = SROUNDUP_LWORK(LW) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN * * End of CLAMTSQR diff --git a/lapack-netlib/SRC/claswlq.f b/lapack-netlib/SRC/claswlq.f index 12e8373df9..2044e055cc 100644 --- a/lapack-netlib/SRC/claswlq.f +++ b/lapack-netlib/SRC/claswlq.f @@ -96,22 +96,24 @@ *> The leading dimension of the array T. LDT >= MB. *> \endverbatim *> -*> *> \param[out] WORK *> \verbatim -*> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) -*> +*> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim +*> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= MB*M. +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MB*M, otherwise. +*> *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. -*> *> \endverbatim +*> *> \param[out] INFO *> \verbatim *> INFO is INTEGER @@ -163,33 +165,35 @@ *> * ===================================================================== SUBROUTINE CLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, - $ INFO) + $ INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- * * .. Scalar Arguments .. - INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT + INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT * .. * .. Array Arguments .. - COMPLEX A( LDA, * ), WORK( * ), T( LDT, *) + COMPLEX A( LDA, * ), WORK( * ), T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LQUERY - INTEGER I, II, KK, CTR + LOGICAL LQUERY + INTEGER I, II, KK, CTR, MINMN, LWMIN * .. * .. EXTERNAL FUNCTIONS .. LOGICAL LSAME INTEGER ILAENV REAL SROUNDUP_LWORK EXTERNAL LSAME, ILAENV, SROUNDUP_LWORK +* .. * .. EXTERNAL SUBROUTINES .. EXTERNAL CGELQT, CTPLQT, XERBLA +* .. * .. INTRINSIC FUNCTIONS .. INTRINSIC MAX, MIN, MOD * .. @@ -200,12 +204,19 @@ SUBROUTINE CLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, INFO = 0 * LQUERY = ( LWORK.EQ.-1 ) +* + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = M*MB + END IF * IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 .OR. N.LT.M ) THEN INFO = -2 - ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 )) THEN + ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 ) ) THEN INFO = -3 ELSE IF( NB.LE.0 ) THEN INFO = -4 @@ -213,60 +224,61 @@ SUBROUTINE CLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, INFO = -6 ELSE IF( LDT.LT.MB ) THEN INFO = -8 - ELSE IF( ( LWORK.LT.M*MB) .AND. (.NOT.LQUERY) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -10 END IF - IF( INFO.EQ.0) THEN - WORK(1) = SROUNDUP_LWORK(MB*M) +* + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CLASWLQ', -INFO ) RETURN - ELSE IF (LQUERY) THEN - RETURN + ELSE IF( LQUERY ) THEN + RETURN END IF * * Quick return if possible * - IF( MIN(M,N).EQ.0 ) THEN - RETURN + IF( MINMN.EQ.0 ) THEN + RETURN END IF * * The LQ Decomposition * - IF((M.GE.N).OR.(NB.LE.M).OR.(NB.GE.N)) THEN + IF( (M.GE.N) .OR. (NB.LE.M) .OR. (NB.GE.N) ) THEN CALL CGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO) RETURN - END IF + END IF * - KK = MOD((N-M),(NB-M)) - II=N-KK+1 + KK = MOD((N-M),(NB-M)) + II = N-KK+1 * -* Compute the LQ factorization of the first block A(1:M,1:NB) +* Compute the LQ factorization of the first block A(1:M,1:NB) * - CALL CGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO) - CTR = 1 + CALL CGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO) + CTR = 1 * - DO I = NB+1, II-NB+M , (NB-M) + DO I = NB+1, II-NB+M , (NB-M) * -* Compute the QR factorization of the current block A(1:M,I:I+NB-M) +* Compute the QR factorization of the current block A(1:M,I:I+NB-M) * - CALL CTPLQT( M, NB-M, 0, MB, A(1,1), LDA, A( 1, I ), + CALL CTPLQT( M, NB-M, 0, MB, A(1,1), LDA, A( 1, I ), $ LDA, T(1,CTR*M+1), $ LDT, WORK, INFO ) - CTR = CTR + 1 - END DO + CTR = CTR + 1 + END DO * * Compute the QR factorization of the last block A(1:M,II:N) * - IF (II.LE.N) THEN + IF( II.LE.N ) THEN CALL CTPLQT( M, KK, 0, MB, A(1,1), LDA, A( 1, II ), $ LDA, T(1,CTR*M+1), LDT, $ WORK, INFO ) - END IF + END IF * - WORK( 1 ) = SROUNDUP_LWORK(M * MB) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN * * End of CLASWLQ diff --git a/lapack-netlib/SRC/clatrs3.f b/lapack-netlib/SRC/clatrs3.f index 0502f6898b..354141a8b1 100644 --- a/lapack-netlib/SRC/clatrs3.f +++ b/lapack-netlib/SRC/clatrs3.f @@ -152,13 +152,17 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL array, dimension (LWORK). +*> WORK is REAL array, dimension (MAX(1,LWORK)). *> On exit, if INFO = 0, WORK(1) returns the optimal size of *> WORK. *> \endverbatim *> *> \param[in] LWORK +*> \verbatim *> LWORK is INTEGER +*> The dimension of the array WORK. +*> +*> If MIN(N,NRHS) = 0, LWORK >= 1, else *> LWORK >= MAX(1, 2*NBA * MAX(NBA, MIN(NRHS, 32)), where *> NBA = (N + NB - 1)/NB and NB is the optimal block size. *> @@ -166,6 +170,7 @@ *> only calculates the optimal dimensions of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. +*> \endverbatim *> *> \param[out] INFO *> \verbatim @@ -182,7 +187,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleOTHERauxiliary +*> \ingroup latrs3 *> \par Further Details: * ===================== * \verbatim @@ -257,15 +262,16 @@ SUBROUTINE CLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, LOGICAL LQUERY, NOTRAN, NOUNIT, UPPER INTEGER AWRK, I, IFIRST, IINC, ILAST, II, I1, I2, J, $ JFIRST, JINC, JLAST, J1, J2, K, KK, K1, K2, - $ LANRM, LDS, LSCALE, NB, NBA, NBX, RHS + $ LANRM, LDS, LSCALE, NB, NBA, NBX, RHS, LWMIN REAL ANRM, BIGNUM, BNRM, RSCAL, SCAL, SCALOC, $ SCAMIN, SMLNUM, TMAX * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV - REAL SLAMCH, CLANGE, SLARMM - EXTERNAL ILAENV, LSAME, SLAMCH, CLANGE, SLARMM + REAL SLAMCH, CLANGE, SLARMM, SROUNDUP_LWORK + EXTERNAL ILAENV, LSAME, SLAMCH, CLANGE, SLARMM, + $ SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL CLATRS, CSSCAL, XERBLA @@ -296,15 +302,24 @@ SUBROUTINE CLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, * row. WORK( I + KK * LDS ) is the scale factor of the vector * segment associated with the I-th block row and the KK-th vector * in the block column. +* LSCALE = NBA * MAX( NBA, MIN( NRHS, NBRHS ) ) LDS = NBA +* * The second part stores upper bounds of the triangular A. There are * a total of NBA x NBA blocks, of which only the upper triangular * part or the lower triangular part is referenced. The upper bound of * the block A( I, J ) is stored as WORK( AWRK + I + J * NBA ). +* LANRM = NBA * NBA AWRK = LSCALE - WORK( 1 ) = LSCALE + LANRM +* + IF( MIN( N, NRHS ).EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = LSCALE + LANRM + END IF + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) * * Test the input parameters. * @@ -326,7 +341,7 @@ SUBROUTINE CLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, INFO = -8 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -10 - ELSE IF( .NOT.LQUERY .AND. LWORK.LT.WORK( 1 ) ) THEN + ELSE IF( .NOT.LQUERY .AND. LWORK.LT.LWMIN ) THEN INFO = -14 END IF IF( INFO.NE.0 ) THEN @@ -659,6 +674,9 @@ SUBROUTINE CLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, END IF END DO END DO +* + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) +* RETURN * * End of CLATRS3 diff --git a/lapack-netlib/SRC/clatsqr.f b/lapack-netlib/SRC/clatsqr.f index cd2cb4aa7f..67403693f8 100644 --- a/lapack-netlib/SRC/clatsqr.f +++ b/lapack-netlib/SRC/clatsqr.f @@ -101,15 +101,18 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) +*> (workspace) COMPLEX array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= NB*N. +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= NB*N, otherwise. +*> *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim @@ -165,32 +168,34 @@ *> * ===================================================================== SUBROUTINE CLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, - $ LWORK, INFO) + $ LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- * * .. Scalar Arguments .. - INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK + INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK * .. * .. Array Arguments .. - COMPLEX A( LDA, * ), WORK( * ), T(LDT, *) + COMPLEX A( LDA, * ), WORK( * ), T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LQUERY - INTEGER I, II, KK, CTR + LOGICAL LQUERY + INTEGER I, II, KK, CTR, LWMIN, MINMN * .. * .. EXTERNAL FUNCTIONS .. LOGICAL LSAME REAL SROUNDUP_LWORK EXTERNAL LSAME, SROUNDUP_LWORK +* .. * .. EXTERNAL SUBROUTINES .. - EXTERNAL CGEQRT, CTPQRT, XERBLA + EXTERNAL CGEQRT, CTPQRT, XERBLA +* .. * .. INTRINSIC FUNCTIONS .. INTRINSIC MAX, MIN, MOD * .. @@ -201,6 +206,13 @@ SUBROUTINE CLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, INFO = 0 * LQUERY = ( LWORK.EQ.-1 ) +* + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = N*NB + END IF * IF( M.LT.0 ) THEN INFO = -1 @@ -208,64 +220,65 @@ SUBROUTINE CLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, INFO = -2 ELSE IF( MB.LT.1 ) THEN INFO = -3 - ELSE IF( NB.LT.1 .OR. ( NB.GT.N .AND. N.GT.0 )) THEN + ELSE IF( NB.LT.1 .OR. ( NB.GT.N .AND. N.GT.0 ) ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -6 ELSE IF( LDT.LT.NB ) THEN INFO = -8 - ELSE IF( LWORK.LT.(N*NB) .AND. (.NOT.LQUERY) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -10 END IF - IF( INFO.EQ.0) THEN - WORK(1) = SROUNDUP_LWORK(NB*N) +* + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CLATSQR', -INFO ) RETURN - ELSE IF (LQUERY) THEN - RETURN + ELSE IF( LQUERY ) THEN + RETURN END IF * * Quick return if possible * - IF( MIN(M,N).EQ.0 ) THEN - RETURN + IF( MINMN.EQ.0 ) THEN + RETURN END IF * * The QR Decomposition * - IF ((MB.LE.N).OR.(MB.GE.M)) THEN - CALL CGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO) - RETURN - END IF - KK = MOD((M-N),(MB-N)) - II=M-KK+1 + IF ( (MB.LE.N) .OR. (MB.GE.M) ) THEN + CALL CGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO ) + RETURN + END IF + KK = MOD((M-N),(MB-N)) + II = M-KK+1 * -* Compute the QR factorization of the first block A(1:MB,1:N) +* Compute the QR factorization of the first block A(1:MB,1:N) * - CALL CGEQRT( MB, N, NB, A(1,1), LDA, T, LDT, WORK, INFO ) - CTR = 1 + CALL CGEQRT( MB, N, NB, A(1,1), LDA, T, LDT, WORK, INFO ) + CTR = 1 * - DO I = MB+1, II-MB+N , (MB-N) + DO I = MB+1, II-MB+N, (MB-N) * -* Compute the QR factorization of the current block A(I:I+MB-N,1:N) +* Compute the QR factorization of the current block A(I:I+MB-N,1:N) * - CALL CTPQRT( MB-N, N, 0, NB, A(1,1), LDA, A( I, 1 ), LDA, + CALL CTPQRT( MB-N, N, 0, NB, A(1,1), LDA, A( I, 1 ), LDA, $ T(1,CTR * N + 1), - $ LDT, WORK, INFO ) - CTR = CTR + 1 - END DO + $ LDT, WORK, INFO ) + CTR = CTR + 1 + END DO * -* Compute the QR factorization of the last block A(II:M,1:N) +* Compute the QR factorization of the last block A(II:M,1:N) * - IF (II.LE.M) THEN - CALL CTPQRT( KK, N, 0, NB, A(1,1), LDA, A( II, 1 ), LDA, + IF( II.LE.M ) THEN + CALL CTPQRT( KK, N, 0, NB, A(1,1), LDA, A( II, 1 ), LDA, $ T(1, CTR * N + 1), LDT, - $ WORK, INFO ) - END IF + $ WORK, INFO ) + END IF * - WORK( 1 ) = SROUNDUP_LWORK(N*NB) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN * * End of CLATSQR diff --git a/lapack-netlib/SRC/dgebrd.f b/lapack-netlib/SRC/dgebrd.f index 0f0d1651a7..ac11d48a0b 100644 --- a/lapack-netlib/SRC/dgebrd.f +++ b/lapack-netlib/SRC/dgebrd.f @@ -122,7 +122,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of the array WORK. LWORK >= max(1,M,N). +*> The length of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MAX(M,N), otherwise. *> For optimum performance LWORK >= (M+N)*NB, where NB *> is the optimal blocksize. *> @@ -147,7 +148,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleGEcomputational +*> \ingroup gebrd * *> \par Further Details: * ===================== @@ -223,8 +224,8 @@ SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * .. * .. Local Scalars .. LOGICAL LQUERY - INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB, - $ NBMIN, NX, WS + INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKMIN, LWKOPT, + $ MINMN, NB, NBMIN, NX, WS * .. * .. External Subroutines .. EXTERNAL DGEBD2, DGEMM, DLABRD, XERBLA @@ -241,9 +242,17 @@ SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * Test the input parameters * INFO = 0 - NB = MAX( 1, ILAENV( 1, 'DGEBRD', ' ', M, N, -1, -1 ) ) - LWKOPT = ( M+N )*NB + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWKMIN = 1 + LWKOPT = 1 + ELSE + LWKMIN = MAX( M, N ) + NB = MAX( 1, ILAENV( 1, 'DGEBRD', ' ', M, N, -1, -1 ) ) + LWKOPT = ( M+N )*NB + ENDIF WORK( 1 ) = DBLE( LWKOPT ) +* LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 @@ -251,7 +260,7 @@ SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -10 END IF IF( INFO.LT.0 ) THEN @@ -263,7 +272,6 @@ SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * * Quick return if possible * - MINMN = MIN( M, N ) IF( MINMN.EQ.0 ) THEN WORK( 1 ) = 1 RETURN @@ -282,7 +290,7 @@ SUBROUTINE DGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * Determine when to switch from blocked to unblocked code. * IF( NX.LT.MINMN ) THEN - WS = ( M+N )*NB + WS = LWKOPT IF( LWORK.LT.WS ) THEN * * Not enough work space for the optimal NB, consider using diff --git a/lapack-netlib/SRC/dgehrd.f b/lapack-netlib/SRC/dgehrd.f index a40c61cb6d..d95bbd1827 100644 --- a/lapack-netlib/SRC/dgehrd.f +++ b/lapack-netlib/SRC/dgehrd.f @@ -89,7 +89,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, dimension (LWORK) +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> @@ -120,7 +120,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleGEcomputational +*> \ingroup gehrd * *> \par Further Details: * ===================== @@ -173,7 +173,7 @@ SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) INTEGER IHI, ILO, INFO, LDA, LWORK, N * .. * .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) + DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) * .. * * ===================================================================== @@ -182,7 +182,7 @@ SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) INTEGER NBMAX, LDT, TSIZE PARAMETER ( NBMAX = 64, LDT = NBMAX+1, $ TSIZE = LDT*NBMAX ) - DOUBLE PRECISION ZERO, ONE + DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, $ ONE = 1.0D+0 ) * .. @@ -190,7 +190,7 @@ SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) LOGICAL LQUERY INTEGER I, IB, IINFO, IWT, J, LDWORK, LWKOPT, NB, $ NBMIN, NH, NX - DOUBLE PRECISION EI + DOUBLE PRECISION EI * .. * .. External Subroutines .. EXTERNAL DAXPY, DGEHD2, DGEMM, DLAHR2, DLARFB, DTRMM, @@ -221,12 +221,18 @@ SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) INFO = -8 END IF * + NH = IHI - ILO + 1 IF( INFO.EQ.0 ) THEN * * Compute the workspace requirements * - NB = MIN( NBMAX, ILAENV( 1, 'DGEHRD', ' ', N, ILO, IHI, -1 ) ) - LWKOPT = N*NB + TSIZE + IF( NH.LE.1 ) THEN + LWKOPT = 1 + ELSE + NB = MIN( NBMAX, ILAENV( 1, 'DGEHRD', ' ', N, ILO, IHI, + $ -1 ) ) + LWKOPT = N*NB + TSIZE + ENDIF WORK( 1 ) = LWKOPT END IF * @@ -248,7 +254,6 @@ SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) * * Quick return if possible * - NH = IHI - ILO + 1 IF( NH.LE.1 ) THEN WORK( 1 ) = 1 RETURN @@ -268,7 +273,7 @@ SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) * * Determine if workspace is large enough for blocked code * - IF( LWORK.LT.N*NB+TSIZE ) THEN + IF( LWORK.LT.LWKOPT ) THEN * * Not enough workspace to use optimal NB: determine the * minimum value of NB, and reduce NB or force use of @@ -344,6 +349,7 @@ SUBROUTINE DGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) * Use unblocked code to reduce the rest of the matrix * CALL DGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO ) +* WORK( 1 ) = LWKOPT * RETURN diff --git a/lapack-netlib/SRC/dgelq.f b/lapack-netlib/SRC/dgelq.f index 013b6c3564..255e8732f2 100644 --- a/lapack-netlib/SRC/dgelq.f +++ b/lapack-netlib/SRC/dgelq.f @@ -98,7 +98,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1 or -2, then a workspace query is assumed. The routine *> only calculates the sizes of the T and WORK arrays, returns these *> values as the first entries of the T and WORK arrays, and no error @@ -166,6 +166,8 @@ *> the LQ factorization. *> \endverbatim *> +*> \ingroup gelq +*> * ===================================================================== SUBROUTINE DGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ INFO ) diff --git a/lapack-netlib/SRC/dgelqf.f b/lapack-netlib/SRC/dgelqf.f index ed3372f965..f0eb00a55d 100644 --- a/lapack-netlib/SRC/dgelqf.f +++ b/lapack-netlib/SRC/dgelqf.f @@ -93,7 +93,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,M). +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M, otherwise. *> For optimum performance LWORK >= M*NB, where NB is the *> optimal blocksize. *> @@ -118,7 +119,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleGEcomputational +*> \ingroup gelqf * *> \par Further Details: * ===================== @@ -174,9 +175,8 @@ SUBROUTINE DGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * Test the input arguments * INFO = 0 + K = MIN( M, N ) NB = ILAENV( 1, 'DGELQF', ' ', M, N, -1, -1 ) - LWKOPT = M*NB - WORK( 1 ) = LWKOPT LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 @@ -184,19 +184,25 @@ SUBROUTINE DGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN - INFO = -7 + ELSE IF( .NOT.LQUERY ) THEN + IF( LWORK.LE.0 .OR. ( N.GT.0 .AND. LWORK.LT.MAX( 1, M ) ) ) + $ INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DGELQF', -INFO ) RETURN ELSE IF( LQUERY ) THEN + IF( K.EQ.0 ) THEN + LWKOPT = 1 + ELSE + LWKOPT = M*NB + END IF + WORK( 1 ) = LWKOPT RETURN END IF * * Quick return if possible * - K = MIN( M, N ) IF( K.EQ.0 ) THEN WORK( 1 ) = 1 RETURN diff --git a/lapack-netlib/SRC/dgelsd.f b/lapack-netlib/SRC/dgelsd.f index b1f45a2c6c..7dc564f481 100644 --- a/lapack-netlib/SRC/dgelsd.f +++ b/lapack-netlib/SRC/dgelsd.f @@ -188,7 +188,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleGEsolve +*> \ingroup gelsd * *> \par Contributors: * ================== @@ -228,7 +228,7 @@ SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, DOUBLE PRECISION ANRM, BIGNUM, BNRM, EPS, SFMIN, SMLNUM * .. * .. External Subroutines .. - EXTERNAL DGEBRD, DGELQF, DGEQRF, DLABAD, DLACPY, DLALSD, + EXTERNAL DGEBRD, DGELQF, DGEQRF, DLACPY, DLALSD, $ DLASCL, DLASET, DORMBR, DORMLQ, DORMQR, XERBLA * .. * .. External Functions .. @@ -276,7 +276,7 @@ SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, $ LOG( TWO ) ) + 1, 0 ) * IF( INFO.EQ.0 ) THEN - MAXWRK = 0 + MAXWRK = 1 LIWORK = 3*MINMN*NLVL + 11*MINMN MM = M IF( M.GE.N .AND. M.GE.MNTHR ) THEN @@ -372,7 +372,6 @@ SUBROUTINE DGELSD( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, SFMIN = DLAMCH( 'S' ) SMLNUM = SFMIN / EPS BIGNUM = ONE / SMLNUM - CALL DLABAD( SMLNUM, BIGNUM ) * * Scale A if max entry outside range [SMLNUM,BIGNUM]. * diff --git a/lapack-netlib/SRC/dgemlq.f b/lapack-netlib/SRC/dgemlq.f index 3ba2091054..757683f467 100644 --- a/lapack-netlib/SRC/dgemlq.f +++ b/lapack-netlib/SRC/dgemlq.f @@ -111,16 +111,17 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1, then a workspace query is assumed. The routine *> only calculates the size of the WORK array, returns this -*> value as WORK(1), and no error message related to WORK +*> value as WORK(1), and no error message related to WORK *> is issued by XERBLA. *> \endverbatim *> @@ -144,7 +145,7 @@ *> *> \verbatim *> -*> These details are particular for this LAPACK implementation. Users should not +*> These details are particular for this LAPACK implementation. Users should not *> take them for granted. These details may change in the future, and are not likely *> true for another LAPACK implementation. These details are relevant if one wants *> to try to understand the code. They are not part of the interface. @@ -160,11 +161,13 @@ *> block sizes MB and NB returned by ILAENV, DGELQ will use either *> DLASWLQ (if the matrix is wide-and-short) or DGELQT to compute *> the LQ factorization. -*> This version of DGEMLQ will use either DLAMSWLQ or DGEMLQT to +*> This version of DGEMLQ will use either DLAMSWLQ or DGEMLQT to *> multiply matrix Q by another matrix. *> Further Details in DLAMSWLQ or DGEMLQT. *> \endverbatim *> +*> \ingroup gemlq +*> * ===================================================================== SUBROUTINE DGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, $ C, LDC, WORK, LWORK, INFO ) @@ -186,7 +189,7 @@ SUBROUTINE DGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * .. * .. Local Scalars .. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER MB, NB, LW, NBLCKS, MN + INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME @@ -202,7 +205,7 @@ SUBROUTINE DGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Test the input arguments * - LQUERY = LWORK.EQ.-1 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'T' ) LEFT = LSAME( SIDE, 'L' ) @@ -217,6 +220,13 @@ SUBROUTINE DGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, LW = M * MB MN = N END IF +* + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF * IF( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN IF( MOD( MN - K, NB - K ) .EQ. 0 ) THEN @@ -245,12 +255,12 @@ SUBROUTINE DGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, INFO = -9 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 - ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN INFO = -13 END IF * IF( INFO.EQ.0 ) THEN - WORK( 1 ) = LW + WORK( 1 ) = LWMIN END IF * IF( INFO.NE.0 ) THEN @@ -262,7 +272,7 @@ SUBROUTINE DGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Quick return if possible * - IF( MIN( M, N, K ).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF * @@ -275,7 +285,7 @@ SUBROUTINE DGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, $ MB, C, LDC, WORK, LWORK, INFO ) END IF * - WORK( 1 ) = LW + WORK( 1 ) = LWMIN * RETURN * diff --git a/lapack-netlib/SRC/dgemqr.f b/lapack-netlib/SRC/dgemqr.f index 022cf21e43..6088154837 100644 --- a/lapack-netlib/SRC/dgemqr.f +++ b/lapack-netlib/SRC/dgemqr.f @@ -111,16 +111,17 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1, then a workspace query is assumed. The routine *> only calculates the size of the WORK array, returns this -*> value as WORK(1), and no error message related to WORK +*> value as WORK(1), and no error message related to WORK *> is issued by XERBLA. *> \endverbatim *> @@ -144,7 +145,7 @@ *> *> \verbatim *> -*> These details are particular for this LAPACK implementation. Users should not +*> These details are particular for this LAPACK implementation. Users should not *> take them for granted. These details may change in the future, and are not likely *> true for another LAPACK implementation. These details are relevant if one wants *> to try to understand the code. They are not part of the interface. @@ -160,12 +161,14 @@ *> block sizes MB and NB returned by ILAENV, DGEQR will use either *> DLATSQR (if the matrix is tall-and-skinny) or DGEQRT to compute *> the QR factorization. -*> This version of DGEMQR will use either DLAMTSQR or DGEMQRT to +*> This version of DGEMQR will use either DLAMTSQR or DGEMQRT to *> multiply matrix Q by another matrix. *> Further Details in DLATMSQR or DGEMQRT. *> *> \endverbatim *> +*> \ingroup gemqr +*> * ===================================================================== SUBROUTINE DGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, $ C, LDC, WORK, LWORK, INFO ) @@ -187,7 +190,7 @@ SUBROUTINE DGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * .. * .. Local Scalars .. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER MB, NB, LW, NBLCKS, MN + INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME @@ -203,7 +206,7 @@ SUBROUTINE DGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Test the input arguments * - LQUERY = LWORK.EQ.-1 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'T' ) LEFT = LSAME( SIDE, 'L' ) @@ -218,6 +221,13 @@ SUBROUTINE DGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, LW = MB * NB MN = N END IF +* + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF * IF( ( MB.GT.K ) .AND. ( MN.GT.K ) ) THEN IF( MOD( MN - K, MB - K ).EQ.0 ) THEN @@ -246,12 +256,12 @@ SUBROUTINE DGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, INFO = -9 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 - ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN INFO = -13 END IF * IF( INFO.EQ.0 ) THEN - WORK( 1 ) = LW + WORK( 1 ) = LWMIN END IF * IF( INFO.NE.0 ) THEN @@ -263,7 +273,7 @@ SUBROUTINE DGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Quick return if possible * - IF( MIN( M, N, K ).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF * @@ -276,7 +286,7 @@ SUBROUTINE DGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, $ NB, C, LDC, WORK, LWORK, INFO ) END IF * - WORK( 1 ) = LW + WORK( 1 ) = LWMIN * RETURN * diff --git a/lapack-netlib/SRC/dgeqlf.f b/lapack-netlib/SRC/dgeqlf.f index b8ac0b1a0e..a72d9dc766 100644 --- a/lapack-netlib/SRC/dgeqlf.f +++ b/lapack-netlib/SRC/dgeqlf.f @@ -88,7 +88,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,N). +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= N, otherwise. *> For optimum performance LWORK >= N*NB, where NB is the *> optimal blocksize. *> @@ -113,7 +114,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleGEcomputational +*> \ingroup geqlf * *> \par Further Details: * ===================== @@ -188,8 +189,9 @@ SUBROUTINE DGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) END IF WORK( 1 ) = LWKOPT * - IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN - INFO = -7 + IF( .NOT.LQUERY ) THEN + IF( LWORK.LE.0 .OR. ( M.GT.0 .AND. LWORK.LT.MAX( 1, N ) ) ) + $ INFO = -7 END IF END IF * diff --git a/lapack-netlib/SRC/dgeqp3rk.f b/lapack-netlib/SRC/dgeqp3rk.f index 117a68287f..b8e41b39cd 100644 --- a/lapack-netlib/SRC/dgeqp3rk.f +++ b/lapack-netlib/SRC/dgeqp3rk.f @@ -427,7 +427,8 @@ *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. -*. LWORK >= (3*N + NRHS - 1) +*> LWORK >= 1, if MIN(M,N) = 0, and +*> LWORK >= (3*N+NRHS-1), otherwise. *> For optimal performance LWORK >= (2*N + NB*( N+NRHS+1 )), *> where NB is the optimal block size for DGEQP3RK returned *> by ILAENV. Minimal block size MINNB=2. diff --git a/lapack-netlib/SRC/dgeqr.f b/lapack-netlib/SRC/dgeqr.f index eac8930ce0..6ed8f211f1 100644 --- a/lapack-netlib/SRC/dgeqr.f +++ b/lapack-netlib/SRC/dgeqr.f @@ -99,7 +99,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1 or -2, then a workspace query is assumed. The routine *> only calculates the sizes of the T and WORK arrays, returns these *> values as the first entries of the T and WORK arrays, and no error @@ -168,6 +168,8 @@ *> *> \endverbatim *> +*> \ingroup geqr +*> * ===================================================================== SUBROUTINE DGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ INFO ) @@ -188,7 +190,7 @@ SUBROUTINE DGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, * .. * .. Local Scalars .. LOGICAL LQUERY, LMINWS, MINT, MINW - INTEGER MB, NB, MINTSZ, NBLCKS + INTEGER MB, NB, MINTSZ, NBLCKS, LWMIN, LWREQ * .. * .. External Functions .. LOGICAL LSAME @@ -244,8 +246,10 @@ SUBROUTINE DGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, * * Determine if the workspace size satisfies minimal size * + LWMIN = MAX( 1, N ) + LWREQ = MAX( 1, N*NB ) LMINWS = .FALSE. - IF( ( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) .OR. LWORK.LT.NB*N ) + IF( ( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) .OR. LWORK.LT.LWREQ ) $ .AND. ( LWORK.GE.N ) .AND. ( TSIZE.GE.MINTSZ ) $ .AND. ( .NOT.LQUERY ) ) THEN IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) ) THEN @@ -253,7 +257,7 @@ SUBROUTINE DGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, NB = 1 MB = M END IF - IF( LWORK.LT.NB*N ) THEN + IF( LWORK.LT.LWREQ ) THEN LMINWS = .TRUE. NB = 1 END IF @@ -268,7 +272,7 @@ SUBROUTINE DGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, ELSE IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) $ .AND. ( .NOT.LQUERY ) .AND. ( .NOT.LMINWS ) ) THEN INFO = -6 - ELSE IF( ( LWORK.LT.MAX( 1, N*NB ) ) .AND. ( .NOT.LQUERY ) + ELSE IF( ( LWORK.LT.LWREQ ) .AND. ( .NOT.LQUERY ) $ .AND. ( .NOT.LMINWS ) ) THEN INFO = -8 END IF @@ -282,9 +286,9 @@ SUBROUTINE DGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, T( 2 ) = MB T( 3 ) = NB IF( MINW ) THEN - WORK( 1 ) = MAX( 1, N ) + WORK( 1 ) = LWMIN ELSE - WORK( 1 ) = MAX( 1, NB*N ) + WORK( 1 ) = LWREQ END IF END IF IF( INFO.NE.0 ) THEN @@ -309,7 +313,7 @@ SUBROUTINE DGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ LWORK, INFO ) END IF * - WORK( 1 ) = MAX( 1, NB*N ) + WORK( 1 ) = LWREQ * RETURN * diff --git a/lapack-netlib/SRC/dgeqrfp.f b/lapack-netlib/SRC/dgeqrfp.f index 46d2ee4794..aa757e96cf 100644 --- a/lapack-netlib/SRC/dgeqrfp.f +++ b/lapack-netlib/SRC/dgeqrfp.f @@ -97,7 +97,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,N). +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= N, otherwise. *> For optimum performance LWORK >= N*NB, where NB is *> the optimal blocksize. *> @@ -122,7 +123,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleGEcomputational +*> \ingroup geqrfp * *> \par Further Details: * ===================== @@ -162,8 +163,8 @@ SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * * .. Local Scalars .. LOGICAL LQUERY - INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB, - $ NBMIN, NX + INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKMIN, LWKOPT, + $ NB, NBMIN, NX * .. * .. External Subroutines .. EXTERNAL DGEQR2P, DLARFB, DLARFT, XERBLA @@ -181,8 +182,16 @@ SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * INFO = 0 NB = ILAENV( 1, 'DGEQRF', ' ', M, N, -1, -1 ) - LWKOPT = N*NB + K = MIN( M, N ) + IF( K.EQ.0 ) THEN + LWKMIN = 1 + LWKOPT = 1 + ELSE + LWKMIN = N + LWKOPT = N*NB + END IF WORK( 1 ) = LWKOPT +* LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 @@ -190,7 +199,7 @@ SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN @@ -202,7 +211,6 @@ SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * * Quick return if possible * - K = MIN( M, N ) IF( K.EQ.0 ) THEN WORK( 1 ) = 1 RETURN @@ -210,7 +218,7 @@ SUBROUTINE DGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * NBMIN = 2 NX = 0 - IWS = N + IWS = LWKMIN IF( NB.GT.1 .AND. NB.LT.K ) THEN * * Determine when to cross over from blocked to unblocked code. diff --git a/lapack-netlib/SRC/dgerqf.f b/lapack-netlib/SRC/dgerqf.f index cca9d6367b..435239cc79 100644 --- a/lapack-netlib/SRC/dgerqf.f +++ b/lapack-netlib/SRC/dgerqf.f @@ -114,7 +114,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleGEcomputational +*> \ingroup gerqf * *> \par Further Details: * ===================== @@ -189,7 +189,7 @@ SUBROUTINE DGERQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) END IF WORK( 1 ) = LWKOPT * - IF ( .NOT.LQUERY ) THEN + IF( .NOT.LQUERY ) THEN IF( LWORK.LE.0 .OR. ( N.GT.0 .AND. LWORK.LT.MAX( 1, M ) ) ) $ INFO = -7 END IF diff --git a/lapack-netlib/SRC/dgesvj.f b/lapack-netlib/SRC/dgesvj.f index 5fdb21e45c..198bfb0a50 100644 --- a/lapack-netlib/SRC/dgesvj.f +++ b/lapack-netlib/SRC/dgesvj.f @@ -208,7 +208,7 @@ *> *> \param[in,out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, dimension (LWORK) +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *> On entry : *> If JOBU = 'C' : *> WORK(1) = CTOL, where CTOL defines the threshold for convergence. @@ -239,7 +239,12 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> length of WORK, WORK >= MAX(6,M+N) +*> The length of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MAX(6,M+N), otherwise. +*> +*> If on entry LWORK = -1, then a workspace query is assumed and +*> no computation is done; WORK(1) is set to the minial (and optimal) +*> length of WORK. *> \endverbatim *> *> \param[out] INFO @@ -260,7 +265,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleGEcomputational +*> \ingroup gesvj * *> \par Further Details: * ===================== @@ -365,9 +370,9 @@ SUBROUTINE DGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1, $ ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, N2, N34, $ N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP, - $ SWBAND - LOGICAL APPLV, GOSCALE, LOWER, LSVEC, NOSCALE, ROTOK, - $ RSVEC, UCTOL, UPPER + $ SWBAND, MINMN, LWMIN + LOGICAL APPLV, GOSCALE, LOWER, LQUERY, LSVEC, NOSCALE, + $ ROTOK, RSVEC, UCTOL, UPPER * .. * .. Local Arrays .. DOUBLE PRECISION FASTR( 5 ) @@ -408,6 +413,14 @@ SUBROUTINE DGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, UPPER = LSAME( JOBA, 'U' ) LOWER = LSAME( JOBA, 'L' ) * + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 6, M+N ) + END IF +* + LQUERY = ( LWORK.EQ.-1 ) IF( .NOT.( UPPER .OR. LOWER .OR. LSAME( JOBA, 'G' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( LSVEC .OR. UCTOL .OR. LSAME( JOBU, 'N' ) ) ) THEN @@ -427,7 +440,7 @@ SUBROUTINE DGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, INFO = -11 ELSE IF( UCTOL .AND. ( WORK( 1 ).LE.ONE ) ) THEN INFO = -12 - ELSE IF( LWORK.LT.MAX( M+N, 6 ) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. ( .NOT.LQUERY ) ) THEN INFO = -13 ELSE INFO = 0 @@ -437,11 +450,14 @@ SUBROUTINE DGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, IF( INFO.NE.0 ) THEN CALL XERBLA( 'DGESVJ', -INFO ) RETURN + ELSE IF( LQUERY ) THEN + WORK( 1 ) = LWMIN + RETURN END IF * * #:) Quick return for void matrix * - IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )RETURN + IF( MINMN.EQ.0 ) RETURN * * Set numerical parameters * The stopping criterion for Jacobi rotations is diff --git a/lapack-netlib/SRC/dgetri.f b/lapack-netlib/SRC/dgetri.f index 92ef90c186..7b5a3a1b6c 100644 --- a/lapack-netlib/SRC/dgetri.f +++ b/lapack-netlib/SRC/dgetri.f @@ -107,7 +107,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleGEcomputational +*> \ingroup getri * * ===================================================================== SUBROUTINE DGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO ) @@ -151,8 +151,9 @@ SUBROUTINE DGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO ) * INFO = 0 NB = ILAENV( 1, 'DGETRI', ' ', N, -1, -1, -1 ) - LWKOPT = N*NB + LWKOPT = MAX( 1, N*NB ) WORK( 1 ) = LWKOPT +* LQUERY = ( LWORK.EQ.-1 ) IF( N.LT.0 ) THEN INFO = -1 diff --git a/lapack-netlib/SRC/dgetsls.f b/lapack-netlib/SRC/dgetsls.f index 25f4c12c29..73b505ff7e 100644 --- a/lapack-netlib/SRC/dgetsls.f +++ b/lapack-netlib/SRC/dgetsls.f @@ -127,7 +127,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1 or -2, then a workspace query is assumed. *> If LWORK = -1, the routine calculates optimal size of WORK for the *> optimal performance and returns this value in WORK(1). @@ -154,7 +154,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleGEsolve +*> \ingroup getsls * * ===================================================================== SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB, @@ -189,7 +189,7 @@ SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB, * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, DLANGE - EXTERNAL LSAME, DLABAD, DLAMCH, DLANGE + EXTERNAL LSAME, DLAMCH, DLANGE * .. * .. External Subroutines .. EXTERNAL DGEQR, DGEMQR, DLASCL, DLASET, @@ -226,7 +226,10 @@ SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB, * * Determine the optimum and minimum LWORK * - IF( M.GE.N ) THEN + IF( MIN( M, N, NRHS ).EQ.0 ) THEN + WSIZEM = 1 + WSIZEO = 1 + ELSE IF( M.GE.N ) THEN CALL DGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 ) TSZO = INT( TQ( 1 ) ) LWO = INT( WORKQ( 1 ) ) @@ -294,7 +297,6 @@ SUBROUTINE DGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB, * SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' ) BIGNUM = ONE / SMLNUM - CALL DLABAD( SMLNUM, BIGNUM ) * * Scale A, B if max element outside range [SMLNUM,BIGNUM] * diff --git a/lapack-netlib/SRC/dgetsqrhrt.f b/lapack-netlib/SRC/dgetsqrhrt.f index 668deeba81..682c7c30fa 100644 --- a/lapack-netlib/SRC/dgetsqrhrt.f +++ b/lapack-netlib/SRC/dgetsqrhrt.f @@ -130,14 +130,17 @@ *> *> \param[in] LWORK *> \verbatim +*> LWORK is INTEGER *> The dimension of the array WORK. -*> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), +*> If MIN(M,N) = 0, LWORK >= 1, else +*> LWORK >= MAX( 1, LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), *> where *> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)), *> NB1LOCAL = MIN(NB1,N). *> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL, *> LW1 = NB1LOCAL * N, -*> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ), +*> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ). +*> *> If LWORK = -1, then a workspace query is assumed. *> The routine only calculates the optimal size of the WORK *> array, returns this value as the first entry of the WORK @@ -160,7 +163,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleOTHERcomputational +*> \ingroup getsqrhrt * *> \par Contributors: * ================== @@ -212,7 +215,7 @@ SUBROUTINE DGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, * Test the input arguments * INFO = 0 - LQUERY = LWORK.EQ.-1 + LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 .OR. M.LT.N ) THEN @@ -225,7 +228,7 @@ SUBROUTINE DGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, INFO = -5 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -7 - ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN + ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN INFO = -9 ELSE * @@ -263,8 +266,9 @@ SUBROUTINE DGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ) * LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ) + LWORKOPT = MAX( 1, LWORKOPT ) * - IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN + IF( LWORK.LT.LWORKOPT .AND. .NOT.LQUERY ) THEN INFO = -11 END IF * @@ -346,4 +350,4 @@ SUBROUTINE DGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, * * End of DGETSQRHRT * - END \ No newline at end of file + END diff --git a/lapack-netlib/SRC/dgges.f b/lapack-netlib/SRC/dgges.f index 31db23715d..b9ffc79827 100644 --- a/lapack-netlib/SRC/dgges.f +++ b/lapack-netlib/SRC/dgges.f @@ -234,8 +234,8 @@ *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. -*> If N = 0, LWORK >= 1, else LWORK >= 8*N+16. -*> For good performance , LWORK must generally be larger. +*> If N = 0, LWORK >= 1, else LWORK >= MAX(8*N,6*N+16). +*> For good performance, LWORK must generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -275,7 +275,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleGEeigen +*> \ingroup gges * * ===================================================================== SUBROUTINE DGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, @@ -321,9 +321,8 @@ SUBROUTINE DGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, DOUBLE PRECISION DIF( 2 ) * .. * .. External Subroutines .. - EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLABAD, - $ DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN, - $ XERBLA + EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHRD, DHGEQZ, DLACPY, + $ DLASCL, DLASET, DORGQR, DORMQR, DTGSEN, XERBLA * .. * .. External Functions .. LOGICAL LSAME @@ -431,7 +430,6 @@ SUBROUTINE DGGES( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LDB, EPS = DLAMCH( 'P' ) SAFMIN = DLAMCH( 'S' ) SAFMAX = ONE / SAFMIN - CALL DLABAD( SAFMIN, SAFMAX ) SMLNUM = SQRT( SAFMIN ) / EPS BIGNUM = ONE / SMLNUM * diff --git a/lapack-netlib/SRC/dgges3.f b/lapack-netlib/SRC/dgges3.f index 7b00d294af..2ef55951a3 100644 --- a/lapack-netlib/SRC/dgges3.f +++ b/lapack-netlib/SRC/dgges3.f @@ -234,6 +234,8 @@ *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. +*> If N = 0, LWORK >= 1, else LWORK >= 6*N+16. +*> For good performance, LWORK must generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -273,7 +275,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleGEeigen +*> \ingroup gges3 * * ===================================================================== SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, @@ -309,7 +311,8 @@ SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL, $ LQUERY, LST2SL, WANTST INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, - $ ILO, IP, IRIGHT, IROWS, ITAU, IWRK, LWKOPT + $ ILO, IP, IRIGHT, IROWS, ITAU, IWRK, LWKOPT, + $ LWKMIN DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL, $ PVSR, SAFMAX, SAFMIN, SMLNUM * .. @@ -318,9 +321,8 @@ SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, DOUBLE PRECISION DIF( 2 ) * .. * .. External Subroutines .. - EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHD3, DLAQZ0, DLABAD, - $ DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGSEN, - $ XERBLA + EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHD3, DLAQZ0, DLACPY, + $ DLASCL, DLASET, DORGQR, DORMQR, DTGSEN, XERBLA * .. * .. External Functions .. LOGICAL LSAME @@ -362,6 +364,12 @@ SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) + IF( N.EQ.0 ) THEN + LWKMIN = 1 + ELSE + LWKMIN = 6*N+16 + END IF +* IF( IJOBVL.LE.0 ) THEN INFO = -1 ELSE IF( IJOBVR.LE.0 ) THEN @@ -378,7 +386,7 @@ SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, INFO = -15 ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN INFO = -17 - ELSE IF( LWORK.LT.6*N+16 .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -19 END IF * @@ -386,29 +394,33 @@ SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, * IF( INFO.EQ.0 ) THEN CALL DGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR ) - LWKOPT = MAX( 6*N+16, 3*N+INT( WORK ( 1 ) ) ) + LWKOPT = MAX( LWKMIN, 3*N+INT( WORK( 1 ) ) ) CALL DORMQR( 'L', 'T', N, N, N, B, LDB, WORK, A, LDA, WORK, $ -1, IERR ) - LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 3*N+INT( WORK( 1 ) ) ) IF( ILVSL ) THEN CALL DORGQR( N, N, N, VSL, LDVSL, WORK, WORK, -1, IERR ) - LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 3*N+INT( WORK( 1 ) ) ) END IF CALL DGGHD3( JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, VSL, $ LDVSL, VSR, LDVSR, WORK, -1, IERR ) - LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 3*N+INT( WORK( 1 ) ) ) CALL DLAQZ0( 'S', JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, $ ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, $ WORK, -1, 0, IERR ) - LWKOPT = MAX( LWKOPT, 2*N+INT( WORK ( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 2*N+INT( WORK( 1 ) ) ) IF( WANTST ) THEN CALL DTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, $ ALPHAR, ALPHAI, BETA, VSL, LDVSL, VSR, LDVSR, $ SDIM, PVSL, PVSR, DIF, WORK, -1, IDUM, 1, $ IERR ) - LWKOPT = MAX( LWKOPT, 2*N+INT( WORK ( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 2*N+INT( WORK( 1 ) ) ) + END IF + IF( N.EQ.0 ) THEN + WORK( 1 ) = 1 + ELSE + WORK( 1 ) = LWKOPT END IF - WORK( 1 ) = LWKOPT END IF * IF( INFO.NE.0 ) THEN @@ -430,7 +442,6 @@ SUBROUTINE DGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, EPS = DLAMCH( 'P' ) SAFMIN = DLAMCH( 'S' ) SAFMAX = ONE / SAFMIN - CALL DLABAD( SAFMIN, SAFMAX ) SMLNUM = SQRT( SAFMIN ) / EPS BIGNUM = ONE / SMLNUM * diff --git a/lapack-netlib/SRC/dggev3.f b/lapack-netlib/SRC/dggev3.f index 4bbe8a40f5..b970c04c4e 100644 --- a/lapack-netlib/SRC/dggev3.f +++ b/lapack-netlib/SRC/dggev3.f @@ -188,7 +188,9 @@ *> *> \param[in] LWORK *> \verbatim -*> LWORK is INTEGER +*> LWORK is INTEGER. +*> The dimension of the array WORK. LWORK >= MAX(1,8*N). +*> For good performance, LWORK should generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -217,7 +219,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleGEeigen +*> \ingroup ggev3 * * ===================================================================== SUBROUTINE DGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, @@ -248,7 +250,8 @@ SUBROUTINE DGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY CHARACTER CHTEMP INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO, - $ IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, LWKOPT + $ IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, LWKOPT, + $ LWKMIN DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, $ SMLNUM, TEMP * .. @@ -256,9 +259,8 @@ SUBROUTINE DGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, LOGICAL LDUMMA( 1 ) * .. * .. External Subroutines .. - EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHD3, DLAQZ0, DLABAD, - $ DLACPY, DLASCL, DLASET, DORGQR, DORMQR, DTGEVC, - $ XERBLA + EXTERNAL DGEQRF, DGGBAK, DGGBAL, DGGHD3, DLAQZ0, DLACPY, + $ DLASCL, DLASET, DORGQR, DORMQR, DTGEVC, XERBLA * .. * .. External Functions .. LOGICAL LSAME @@ -299,6 +301,7 @@ SUBROUTINE DGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) + LWKMIN = MAX( 1, 8*N ) IF( IJOBVL.LE.0 ) THEN INFO = -1 ELSE IF( IJOBVR.LE.0 ) THEN @@ -313,7 +316,7 @@ SUBROUTINE DGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, INFO = -12 ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN INFO = -14 - ELSE IF( LWORK.LT.MAX( 1, 8*N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -16 END IF * @@ -321,13 +324,13 @@ SUBROUTINE DGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, * IF( INFO.EQ.0 ) THEN CALL DGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR ) - LWKOPT = MAX(1, 8*N, 3*N+INT( WORK( 1 ) ) ) + LWKOPT = MAX( LWKMIN, 3*N+INT( WORK( 1 ) ) ) CALL DORMQR( 'L', 'T', N, N, N, B, LDB, WORK, A, LDA, WORK, -1, $ IERR ) - LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 3*N+INT( WORK( 1 ) ) ) IF( ILVL ) THEN CALL DORGQR( N, N, N, VL, LDVL, WORK, WORK, -1, IERR ) - LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 3*N+INT( WORK( 1 ) ) ) END IF IF( ILV ) THEN CALL DGGHD3( JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, VL, @@ -336,18 +339,21 @@ SUBROUTINE DGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, CALL DLAQZ0( 'S', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, $ WORK, -1, 0, IERR ) - LWKOPT = MAX( LWKOPT, 2*N+INT( WORK ( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 2*N+INT( WORK( 1 ) ) ) ELSE CALL DGGHD3( 'N', 'N', N, 1, N, A, LDA, B, LDB, VL, LDVL, $ VR, LDVR, WORK, -1, IERR ) - LWKOPT = MAX( LWKOPT, 3*N+INT( WORK ( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 3*N+INT( WORK( 1 ) ) ) CALL DLAQZ0( 'E', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, $ WORK, -1, 0, IERR ) - LWKOPT = MAX( LWKOPT, 2*N+INT( WORK ( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 2*N+INT( WORK( 1 ) ) ) + END IF + IF( N.EQ.0 ) THEN + WORK( 1 ) = 1 + ELSE + WORK( 1 ) = LWKOPT END IF - - WORK( 1 ) = LWKOPT END IF * IF( INFO.NE.0 ) THEN @@ -367,7 +373,6 @@ SUBROUTINE DGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, EPS = DLAMCH( 'P' ) SMLNUM = DLAMCH( 'S' ) BIGNUM = ONE / SMLNUM - CALL DLABAD( SMLNUM, BIGNUM ) SMLNUM = SQRT( SMLNUM ) / EPS BIGNUM = ONE / SMLNUM * diff --git a/lapack-netlib/SRC/dgghd3.f b/lapack-netlib/SRC/dgghd3.f index 43d7a77df5..21a6685734 100644 --- a/lapack-netlib/SRC/dgghd3.f +++ b/lapack-netlib/SRC/dgghd3.f @@ -179,14 +179,14 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, dimension (LWORK) +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> -*> \param[in] LWORK +*> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of the array WORK. LWORK >= 1. +*> The length of the array WORK. LWORK >= 1. *> For optimum performance LWORK >= 6*N*NB, where NB is the *> optimal blocksize. *> @@ -211,7 +211,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleOTHERcomputational +*> \ingroup gghd3 * *> \par Further Details: * ===================== @@ -275,7 +275,12 @@ SUBROUTINE DGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, * INFO = 0 NB = ILAENV( 1, 'DGGHD3', ' ', N, ILO, IHI, -1 ) - LWKOPT = MAX( 6*N*NB, 1 ) + NH = IHI - ILO + 1 + IF( NH.LE.1 ) THEN + LWKOPT = 1 + ELSE + LWKOPT = 6*N*NB + END IF WORK( 1 ) = DBLE( LWKOPT ) INITQ = LSAME( COMPQ, 'I' ) WANTQ = INITQ .OR. LSAME( COMPQ, 'V' ) @@ -325,7 +330,6 @@ SUBROUTINE DGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, * * Quick return if possible * - NH = IHI - ILO + 1 IF( NH.LE.1 ) THEN WORK( 1 ) = ONE RETURN @@ -885,6 +889,7 @@ SUBROUTINE DGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, IF ( JCOL.LT.IHI ) $ CALL DGGHRD( COMPQ2, COMPZ2, N, JCOL, IHI, A, LDA, B, LDB, Q, $ LDQ, Z, LDZ, IERR ) +* WORK( 1 ) = DBLE( LWKOPT ) * RETURN diff --git a/lapack-netlib/SRC/dggqrf.f b/lapack-netlib/SRC/dggqrf.f index 39d27a5c93..edac7f22f2 100644 --- a/lapack-netlib/SRC/dggqrf.f +++ b/lapack-netlib/SRC/dggqrf.f @@ -173,7 +173,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleOTHERcomputational +*> \ingroup ggqrf * *> \par Further Details: * ===================== @@ -250,7 +250,7 @@ SUBROUTINE DGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, NB2 = ILAENV( 1, 'DGERQF', ' ', N, P, -1, -1 ) NB3 = ILAENV( 1, 'DORMQR', ' ', N, M, P, -1 ) NB = MAX( NB1, NB2, NB3 ) - LWKOPT = MAX( N, M, P )*NB + LWKOPT = MAX( 1, MAX( N, M, P )*NB ) WORK( 1 ) = LWKOPT LQUERY = ( LWORK.EQ.-1 ) IF( N.LT.0 ) THEN @@ -287,6 +287,7 @@ SUBROUTINE DGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, * RQ factorization of N-by-P matrix B: B = T*Z. * CALL DGERQF( N, P, B, LDB, TAUB, WORK, LWORK, INFO ) +* WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) ) * RETURN diff --git a/lapack-netlib/SRC/dggrqf.f b/lapack-netlib/SRC/dggrqf.f index ddf4104c59..3b1024c1cd 100644 --- a/lapack-netlib/SRC/dggrqf.f +++ b/lapack-netlib/SRC/dggrqf.f @@ -172,7 +172,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleOTHERcomputational +*> \ingroup ggrqf * *> \par Further Details: * ===================== @@ -249,7 +249,7 @@ SUBROUTINE DGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, NB2 = ILAENV( 1, 'DGEQRF', ' ', P, N, -1, -1 ) NB3 = ILAENV( 1, 'DORMRQ', ' ', M, N, P, -1 ) NB = MAX( NB1, NB2, NB3 ) - LWKOPT = MAX( N, M, P )*NB + LWKOPT = MAX( 1, MAX( N, M, P )*NB ) WORK( 1 ) = LWKOPT LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN diff --git a/lapack-netlib/SRC/dggsvd3.f b/lapack-netlib/SRC/dggsvd3.f index 503f0d8cc7..ee4d11e86f 100644 --- a/lapack-netlib/SRC/dggsvd3.f +++ b/lapack-netlib/SRC/dggsvd3.f @@ -278,7 +278,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -328,7 +328,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleGEsing +*> \ingroup ggsvd3 * *> \par Contributors: * ================== diff --git a/lapack-netlib/SRC/dggsvp3.f b/lapack-netlib/SRC/dggsvp3.f index 4e1db3117b..485d95b369 100644 --- a/lapack-netlib/SRC/dggsvp3.f +++ b/lapack-netlib/SRC/dggsvp3.f @@ -227,7 +227,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -250,7 +250,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleOTHERcomputational +*> \ingroup ggsvp3 * *> \par Further Details: * ===================== diff --git a/lapack-netlib/SRC/dlamswlq.f b/lapack-netlib/SRC/dlamswlq.f index 70e78f4b19..07ef1bd57d 100644 --- a/lapack-netlib/SRC/dlamswlq.f +++ b/lapack-netlib/SRC/dlamswlq.f @@ -127,17 +127,20 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. -*> If SIDE = 'L', LWORK >= max(1,NB) * MB; -*> if SIDE = 'R', LWORK >= max(1,M) * MB. +*> +*> If MIN(M,N,K) = 0, LWORK >= 1. +*> If SIDE = 'L', LWORK >= max(1,NB*MB). +*> If SIDE = 'R', LWORK >= max(1,M*MB). *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim @@ -189,29 +192,31 @@ *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 *> \endverbatim *> +*> \ingroup lamswlq +*> * ===================================================================== SUBROUTINE DLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, - $ LDT, C, LDC, WORK, LWORK, INFO ) + $ LDT, C, LDC, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. - CHARACTER SIDE, TRANS - INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC + CHARACTER SIDE, TRANS + INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC * .. * .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), WORK( * ), C(LDC, * ), - $ T( LDT, * ) + DOUBLE PRECISION A( LDA, * ), WORK( * ), C( LDC, * ), + $ T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER I, II, KK, CTR, LW + LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY + INTEGER I, II, KK, CTR, LW, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME @@ -223,52 +228,60 @@ SUBROUTINE DLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, * * Test the input arguments * - LQUERY = LWORK.LT.0 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'T' ) LEFT = LSAME( SIDE, 'L' ) RIGHT = LSAME( SIDE, 'R' ) - IF (LEFT) THEN + IF( LEFT ) THEN LW = N * MB ELSE LW = M * MB END IF +* + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF * INFO = 0 IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN - INFO = -1 + INFO = -1 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN - INFO = -2 + INFO = -2 ELSE IF( K.LT.0 ) THEN INFO = -5 ELSE IF( M.LT.K ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 - ELSE IF( K.LT.MB .OR. MB.LT.1) THEN + ELSE IF( K.LT.MB .OR. MB.LT.1 ) THEN INFO = -6 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN INFO = -9 - ELSE IF( LDT.LT.MAX( 1, MB) ) THEN + ELSE IF( LDT.LT.MAX( 1, MB ) ) THEN INFO = -11 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN - INFO = -13 - ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN + INFO = -13 + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -15 END IF * + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = LWMIN + END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLAMSWLQ', -INFO ) - WORK(1) = LW RETURN - ELSE IF (LQUERY) THEN - WORK(1) = LW + ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * - IF( MIN(M,N,K).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF * @@ -402,7 +415,8 @@ SUBROUTINE DLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, * END IF * - WORK(1) = LW + WORK( 1 ) = LWMIN +* RETURN * * End of DLAMSWLQ diff --git a/lapack-netlib/SRC/dlamtsqr.f b/lapack-netlib/SRC/dlamtsqr.f index 962a314763..023db5ac9b 100644 --- a/lapack-netlib/SRC/dlamtsqr.f +++ b/lapack-netlib/SRC/dlamtsqr.f @@ -128,22 +128,24 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) -*> +*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim +*> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. +*> If MIN(M,N,K) = 0, LWORK >= 1. +*> If SIDE = 'L', LWORK >= max(1,N*NB). +*> If SIDE = 'R', LWORK >= max(1,MB*NB). *> -*> If SIDE = 'L', LWORK >= max(1,N)*NB; -*> if SIDE = 'R', LWORK >= max(1,MB)*NB. *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. -*> *> \endverbatim +*> *> \param[out] INFO *> \verbatim *> INFO is INTEGER @@ -191,29 +193,31 @@ *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 *> \endverbatim *> +*> \ingroup lamtsqr +*> * ===================================================================== SUBROUTINE DLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, - $ LDT, C, LDC, WORK, LWORK, INFO ) + $ LDT, C, LDC, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. - CHARACTER SIDE, TRANS - INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC + CHARACTER SIDE, TRANS + INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC * .. * .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), WORK( * ), C(LDC, * ), - $ T( LDT, * ) + DOUBLE PRECISION A( LDA, * ), WORK( * ), C( LDC, * ), + $ T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER I, II, KK, LW, CTR, Q + LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY + INTEGER I, II, KK, LW, CTR, Q, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME @@ -225,12 +229,13 @@ SUBROUTINE DLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, * * Test the input arguments * - LQUERY = LWORK.LT.0 + INFO = 0 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'T' ) LEFT = LSAME( SIDE, 'L' ) RIGHT = LSAME( SIDE, 'R' ) - IF (LEFT) THEN + IF( LEFT ) THEN LW = N * NB Q = M ELSE @@ -238,11 +243,17 @@ SUBROUTINE DLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, Q = N END IF * - INFO = 0 + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF +* IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN - INFO = -1 + INFO = -1 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN - INFO = -2 + INFO = -2 ELSE IF( M.LT.K ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN @@ -253,38 +264,38 @@ SUBROUTINE DLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, INFO = -7 ELSE IF( LDA.LT.MAX( 1, Q ) ) THEN INFO = -9 - ELSE IF( LDT.LT.MAX( 1, NB) ) THEN + ELSE IF( LDT.LT.MAX( 1, NB ) ) THEN INFO = -11 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN - INFO = -13 - ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN + INFO = -13 + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -15 END IF * -* Determine the block size if it is tall skinny or short and wide -* - IF( INFO.EQ.0) THEN - WORK(1) = LW + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = LWMIN END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLAMTSQR', -INFO ) RETURN - ELSE IF (LQUERY) THEN - RETURN + ELSE IF( LQUERY ) THEN + RETURN END IF * * Quick return if possible * - IF( MIN(M,N,K).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF +* +* Determine the block size if it is tall skinny or short and wide * IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN CALL DGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA, - $ T, LDT, C, LDC, WORK, INFO) + $ T, LDT, C, LDC, WORK, INFO ) RETURN - END IF + END IF * IF(LEFT.AND.NOTRAN) THEN * @@ -410,7 +421,8 @@ SUBROUTINE DLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, * END IF * - WORK(1) = LW + WORK( 1 ) = LWMIN +* RETURN * * End of DLAMTSQR diff --git a/lapack-netlib/SRC/dlaswlq.f b/lapack-netlib/SRC/dlaswlq.f index c95c94cbc4..636c12dc87 100644 --- a/lapack-netlib/SRC/dlaswlq.f +++ b/lapack-netlib/SRC/dlaswlq.f @@ -99,19 +99,22 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) -*> +*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim +*> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= MB*M. +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MB*M, otherwise. +*> *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. -*> *> \endverbatim +*> *> \param[out] INFO *> \verbatim *> INFO is INTEGER @@ -159,33 +162,37 @@ *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 *> \endverbatim *> +*> \ingroup laswlq +*> * ===================================================================== SUBROUTINE DLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, - $ INFO) + $ INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- * * .. Scalar Arguments .. - INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT + INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT * .. * .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), WORK( * ), T( LDT, *) + DOUBLE PRECISION A( LDA, * ), WORK( * ), T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LQUERY - INTEGER I, II, KK, CTR + LOGICAL LQUERY + INTEGER I, II, KK, CTR, MINMN, LWMIN * .. * .. EXTERNAL FUNCTIONS .. LOGICAL LSAME EXTERNAL LSAME +* .. * .. EXTERNAL SUBROUTINES .. EXTERNAL DGELQT, DTPLQT, XERBLA +* .. * .. INTRINSIC FUNCTIONS .. INTRINSIC MAX, MIN, MOD * .. @@ -196,12 +203,19 @@ SUBROUTINE DLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, INFO = 0 * LQUERY = ( LWORK.EQ.-1 ) +* + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = M*MB + END IF * IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 .OR. N.LT.M ) THEN INFO = -2 - ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 )) THEN + ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 ) ) THEN INFO = -3 ELSE IF( NB.LT.0 ) THEN INFO = -4 @@ -209,60 +223,62 @@ SUBROUTINE DLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, INFO = -6 ELSE IF( LDT.LT.MB ) THEN INFO = -8 - ELSE IF( ( LWORK.LT.M*MB) .AND. (.NOT.LQUERY) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -10 END IF - IF( INFO.EQ.0) THEN - WORK(1) = MB*M +* + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = LWMIN END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLASWLQ', -INFO ) RETURN - ELSE IF (LQUERY) THEN - RETURN + ELSE IF( LQUERY ) THEN + RETURN END IF * * Quick return if possible * - IF( MIN(M,N).EQ.0 ) THEN - RETURN + IF( MINMN.EQ.0 ) THEN + RETURN END IF * * The LQ Decomposition * - IF((M.GE.N).OR.(NB.LE.M).OR.(NB.GE.N)) THEN - CALL DGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO) + IF( (M.GE.N) .OR. (NB.LE.M) .OR. (NB.GE.N) ) THEN + CALL DGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO ) RETURN - END IF + END IF * - KK = MOD((N-M),(NB-M)) - II=N-KK+1 + KK = MOD((N-M),(NB-M)) + II = N-KK+1 * -* Compute the LQ factorization of the first block A(1:M,1:NB) +* Compute the LQ factorization of the first block A(1:M,1:NB) * - CALL DGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO) - CTR = 1 + CALL DGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO ) + CTR = 1 * - DO I = NB+1, II-NB+M , (NB-M) + DO I = NB+1, II-NB+M, (NB-M) * -* Compute the QR factorization of the current block A(1:M,I:I+NB-M) +* Compute the QR factorization of the current block A(1:M,I:I+NB-M) * - CALL DTPLQT( M, NB-M, 0, MB, A(1,1), LDA, A( 1, I ), - $ LDA, T(1, CTR * M + 1), - $ LDT, WORK, INFO ) - CTR = CTR + 1 - END DO + CALL DTPLQT( M, NB-M, 0, MB, A(1,1), LDA, A( 1, I ), + $ LDA, T(1, CTR * M + 1), + $ LDT, WORK, INFO ) + CTR = CTR + 1 + END DO * * Compute the QR factorization of the last block A(1:M,II:N) * - IF (II.LE.N) THEN + IF( II.LE.N ) THEN CALL DTPLQT( M, KK, 0, MB, A(1,1), LDA, A( 1, II ), - $ LDA, T(1, CTR * M + 1), LDT, - $ WORK, INFO ) - END IF + $ LDA, T(1, CTR * M + 1), LDT, + $ WORK, INFO ) + END IF +* + WORK( 1 ) = LWMIN * - WORK( 1 ) = M * MB RETURN * * End of DLASWLQ diff --git a/lapack-netlib/SRC/dlatrs3.f b/lapack-netlib/SRC/dlatrs3.f index e6d78b672c..d18675b2d0 100644 --- a/lapack-netlib/SRC/dlatrs3.f +++ b/lapack-netlib/SRC/dlatrs3.f @@ -151,13 +151,17 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, dimension (LWORK). +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)). *> On exit, if INFO = 0, WORK(1) returns the optimal size of *> WORK. *> \endverbatim *> *> \param[in] LWORK +*> \verbatim *> LWORK is INTEGER +*> The dimension of the array WORK. +*> +*> If MIN(N,NRHS) = 0, LWORK >= 1, else *> LWORK >= MAX(1, 2*NBA * MAX(NBA, MIN(NRHS, 32)), where *> NBA = (N + NB - 1)/NB and NB is the optimal block size. *> @@ -165,6 +169,7 @@ *> only calculates the optimal dimensions of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. +*> \endverbatim *> *> \param[out] INFO *> \verbatim @@ -181,7 +186,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleOTHERauxiliary +*> \ingroup latrs3 *> \par Further Details: * ===================== * \verbatim @@ -253,7 +258,7 @@ SUBROUTINE DLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, LOGICAL LQUERY, NOTRAN, NOUNIT, UPPER INTEGER AWRK, I, IFIRST, IINC, ILAST, II, I1, I2, J, $ JFIRST, JINC, JLAST, J1, J2, K, KK, K1, K2, - $ LANRM, LDS, LSCALE, NB, NBA, NBX, RHS + $ LANRM, LDS, LSCALE, NB, NBA, NBX, RHS, LWMIN DOUBLE PRECISION ANRM, BIGNUM, BNRM, RSCAL, SCAL, SCALOC, $ SCAMIN, SMLNUM, TMAX * .. @@ -292,15 +297,24 @@ SUBROUTINE DLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, * row. WORK( I+KK*LDS ) is the scale factor of the vector * segment associated with the I-th block row and the KK-th vector * in the block column. +* LSCALE = NBA * MAX( NBA, MIN( NRHS, NBRHS ) ) LDS = NBA +* * The second part stores upper bounds of the triangular A. There are * a total of NBA x NBA blocks, of which only the upper triangular * part or the lower triangular part is referenced. The upper bound of * the block A( I, J ) is stored as WORK( AWRK + I + J * NBA ). +* LANRM = NBA * NBA AWRK = LSCALE - WORK( 1 ) = LSCALE + LANRM +* + IF( MIN( N, NRHS ).EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = LSCALE + LANRM + END IF + WORK( 1 ) = LWMIN * * Test the input parameters * @@ -322,7 +336,7 @@ SUBROUTINE DLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, INFO = -8 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -10 - ELSE IF( .NOT.LQUERY .AND. LWORK.LT.WORK( 1 ) ) THEN + ELSE IF( .NOT.LQUERY .AND. LWORK.LT.LWMIN ) THEN INFO = -14 END IF IF( INFO.NE.0 ) THEN @@ -649,6 +663,9 @@ SUBROUTINE DLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, END IF END DO END DO +* + WORK( 1 ) = LWMIN +* RETURN * * End of DLATRS3 diff --git a/lapack-netlib/SRC/dlatsqr.f b/lapack-netlib/SRC/dlatsqr.f index 94a04be028..0000aab68c 100644 --- a/lapack-netlib/SRC/dlatsqr.f +++ b/lapack-netlib/SRC/dlatsqr.f @@ -101,15 +101,18 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= NB*N. +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= NB*N, otherwise. +*> *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim @@ -161,27 +164,29 @@ *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 *> \endverbatim *> +*> \ingroup latsqr +*> * ===================================================================== SUBROUTINE DLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, - $ LWORK, INFO) + $ LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- * * .. Scalar Arguments .. - INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK + INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK * .. * .. Array Arguments .. - DOUBLE PRECISION A( LDA, * ), WORK( * ), T(LDT, *) + DOUBLE PRECISION A( LDA, * ), WORK( * ), T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LQUERY - INTEGER I, II, KK, CTR + LOGICAL LQUERY + INTEGER I, II, KK, CTR, MINMN, LWMIN * .. * .. EXTERNAL FUNCTIONS .. LOGICAL LSAME @@ -198,6 +203,13 @@ SUBROUTINE DLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, INFO = 0 * LQUERY = ( LWORK.EQ.-1 ) +* + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = N*NB + END IF * IF( M.LT.0 ) THEN INFO = -1 @@ -205,65 +217,67 @@ SUBROUTINE DLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, INFO = -2 ELSE IF( MB.LT.1 ) THEN INFO = -3 - ELSE IF( NB.LT.1 .OR. ( NB.GT.N .AND. N.GT.0 )) THEN + ELSE IF( NB.LT.1 .OR. ( NB.GT.N .AND. N.GT.0 ) ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -6 ELSE IF( LDT.LT.NB ) THEN INFO = -8 - ELSE IF( LWORK.LT.(N*NB) .AND. (.NOT.LQUERY) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -10 END IF - IF( INFO.EQ.0) THEN - WORK(1) = NB*N +* + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = LWMIN END IF +* IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLATSQR', -INFO ) RETURN - ELSE IF (LQUERY) THEN - RETURN + ELSE IF( LQUERY ) THEN + RETURN END IF * * Quick return if possible * - IF( MIN(M,N).EQ.0 ) THEN - RETURN + IF( MINMN.EQ.0 ) THEN + RETURN END IF * * The QR Decomposition * - IF ((MB.LE.N).OR.(MB.GE.M)) THEN - CALL DGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO) - RETURN - END IF + IF( (MB.LE.N) .OR. (MB.GE.M) ) THEN + CALL DGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO ) + RETURN + END IF * - KK = MOD((M-N),(MB-N)) - II=M-KK+1 + KK = MOD((M-N),(MB-N)) + II = M-KK+1 * -* Compute the QR factorization of the first block A(1:MB,1:N) +* Compute the QR factorization of the first block A(1:MB,1:N) * - CALL DGEQRT( MB, N, NB, A(1,1), LDA, T, LDT, WORK, INFO ) + CALL DGEQRT( MB, N, NB, A(1,1), LDA, T, LDT, WORK, INFO ) * - CTR = 1 - DO I = MB+1, II-MB+N , (MB-N) + CTR = 1 + DO I = MB+1, II-MB+N, (MB-N) * -* Compute the QR factorization of the current block A(I:I+MB-N,1:N) +* Compute the QR factorization of the current block A(I:I+MB-N,1:N) * - CALL DTPQRT( MB-N, N, 0, NB, A(1,1), LDA, A( I, 1 ), LDA, - $ T(1, CTR * N + 1), - $ LDT, WORK, INFO ) - CTR = CTR + 1 - END DO + CALL DTPQRT( MB-N, N, 0, NB, A(1,1), LDA, A( I, 1 ), LDA, + $ T(1, CTR * N + 1), + $ LDT, WORK, INFO ) + CTR = CTR + 1 + END DO * -* Compute the QR factorization of the last block A(II:M,1:N) +* Compute the QR factorization of the last block A(II:M,1:N) * - IF (II.LE.M) THEN - CALL DTPQRT( KK, N, 0, NB, A(1,1), LDA, A( II, 1 ), LDA, - $ T(1, CTR * N + 1), LDT, - $ WORK, INFO ) - END IF + IF( II.LE.M ) THEN + CALL DTPQRT( KK, N, 0, NB, A(1,1), LDA, A( II, 1 ), LDA, + $ T(1, CTR * N + 1), LDT, + $ WORK, INFO ) + END IF * - WORK( 1 ) = N*NB + WORK( 1 ) = LWMIN RETURN * * End of DLATSQR diff --git a/lapack-netlib/SRC/dsyev_2stage.f b/lapack-netlib/SRC/dsyev_2stage.f index 50d51d992b..286366bfec 100644 --- a/lapack-netlib/SRC/dsyev_2stage.f +++ b/lapack-netlib/SRC/dsyev_2stage.f @@ -20,7 +20,7 @@ * Definition: * =========== * -* SUBROUTINE DSYEV_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, +* SUBROUTINE DSYEV_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, * INFO ) * * IMPLICIT NONE @@ -97,7 +97,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, dimension LWORK +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> @@ -105,12 +105,12 @@ *> \verbatim *> LWORK is INTEGER *> The length of the array WORK. LWORK >= 1, when N <= 1; -*> otherwise +*> otherwise *> If JOBZ = 'N' and N > 1, LWORK must be queried. *> LWORK = MAX(1, dimension) where *> dimension = max(stage1,stage2) + (KD+1)*N + 2*N -*> = N*KD + N*max(KD+1,FACTOPTNB) -*> + max(2*KD*KD, KD*NTHREADS) +*> = N*KD + N*max(KD+1,FACTOPTNB) +*> + max(2*KD*KD, KD*NTHREADS) *> + (KD+1)*N + 2*N *> where KD is the blocking size of the reduction, *> FACTOPTNB is the blocking used by the QR or LQ @@ -143,7 +143,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYeigen +*> \ingroup heev_2stage * *> \par Further Details: * ===================== @@ -161,7 +161,7 @@ *> http://doi.acm.org/10.1145/2063384.2063394 *> *> A. Haidar, J. Kurzak, P. Luszczek, 2013. -*> An improved parallel singular value algorithm and its implementation +*> An improved parallel singular value algorithm and its implementation *> for multicore hardware, In Proceedings of 2013 International Conference *> for High Performance Computing, Networking, Storage and Analysis (SC '13). *> Denver, Colorado, USA, 2013. @@ -169,16 +169,16 @@ *> http://doi.acm.org/10.1145/2503210.2503292 *> *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. -*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure +*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure *> calculations based on fine-grained memory aware tasks. *> International Journal of High Performance Computing Applications. *> Volume 28 Issue 2, Pages 196-209, May 2014. -*> http://hpc.sagepub.com/content/28/2/196 +*> http://hpc.sagepub.com/content/28/2/196 *> *> \endverbatim * * ===================================================================== - SUBROUTINE DSYEV_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, + SUBROUTINE DSYEV_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, $ INFO ) * IMPLICIT NONE @@ -305,7 +305,7 @@ SUBROUTINE DSYEV_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, LLWORK = LWORK - INDWRK + 1 * CALL DSYTRD_2STAGE( JOBZ, UPLO, N, A, LDA, W, WORK( INDE ), - $ WORK( INDTAU ), WORK( INDHOUS ), LHTRD, + $ WORK( INDTAU ), WORK( INDHOUS ), LHTRD, $ WORK( INDWRK ), LLWORK, IINFO ) * * For eigenvalues only, call DSTERF. For eigenvectors, first call diff --git a/lapack-netlib/SRC/dsyevd.f b/lapack-netlib/SRC/dsyevd.f index b27f4cdc7a..adcfcb3731 100644 --- a/lapack-netlib/SRC/dsyevd.f +++ b/lapack-netlib/SRC/dsyevd.f @@ -96,8 +96,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, -*> dimension (LWORK) +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> @@ -160,7 +159,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYeigen +*> \ingroup heevd * *> \par Contributors: * ================== diff --git a/lapack-netlib/SRC/dsyevr.f b/lapack-netlib/SRC/dsyevr.f index 698691533f..8647b0162c 100644 --- a/lapack-netlib/SRC/dsyevr.f +++ b/lapack-netlib/SRC/dsyevr.f @@ -271,7 +271,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,26*N). +*> The dimension of the array WORK. +*> If N <= 1, LWORK >= 1, else LWORK >= 26*N. *> For optimal efficiency, LWORK >= (NB+6)*N, *> where NB is the max of the blocksize for DSYTRD and DORMTR *> returned by ILAENV. @@ -285,13 +286,14 @@ *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) -*> On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. +*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. *> \endverbatim *> *> \param[in] LIWORK *> \verbatim *> LIWORK is INTEGER -*> The dimension of the array IWORK. LIWORK >= max(1,10*N). +*> The dimension of the array IWORK. +*> If N <= 1, LIWORK >= 1, else LIWORK >= 10*N. *> *> If LIWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal size of the IWORK array, @@ -315,7 +317,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYeigen +*> \ingroup heevr * *> \par Contributors: * ================== @@ -390,8 +392,13 @@ SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, * LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) ) * - LWMIN = MAX( 1, 26*N ) - LIWMIN = MAX( 1, 10*N ) + IF( N.LE.1 ) THEN + LWMIN = 1 + LIWMIN = 1 + ELSE + LWMIN = 26*N + LIWMIN = 10*N + END IF * INFO = 0 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN @@ -450,7 +457,7 @@ SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, END IF * IF( N.EQ.1 ) THEN - WORK( 1 ) = 7 + WORK( 1 ) = 1 IF( ALLEIG .OR. INDEIG ) THEN M = 1 W( 1 ) = A( 1, 1 ) diff --git a/lapack-netlib/SRC/dsyevr_2stage.f b/lapack-netlib/SRC/dsyevr_2stage.f index 09242bbd31..63d5e31598 100644 --- a/lapack-netlib/SRC/dsyevr_2stage.f +++ b/lapack-netlib/SRC/dsyevr_2stage.f @@ -263,7 +263,7 @@ *> indicating the nonzero elements in Z. The i-th eigenvector *> is nonzero only in elements ISUPPZ( 2*i-1 ) through *> ISUPPZ( 2*i ). This is an output of DSTEMR (tridiagonal -*> matrix). The support of the eigenvectors of A is typically +*> matrix). The support of the eigenvectors of A is typically *> 1:N because of the orthogonal transformations applied by DORMTR. *> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 *> \endverbatim @@ -277,12 +277,13 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. +*> If N <= 1, LWORK must be at least 1. *> If JOBZ = 'N' and N > 1, LWORK must be queried. *> LWORK = MAX(1, 26*N, dimension) where *> dimension = max(stage1,stage2) + (KD+1)*N + 5*N -*> = N*KD + N*max(KD+1,FACTOPTNB) -*> + max(2*KD*KD, KD*NTHREADS) +*> = N*KD + N*max(KD+1,FACTOPTNB) +*> + max(2*KD*KD, KD*NTHREADS) *> + (KD+1)*N + 5*N *> where KD is the blocking size of the reduction, *> FACTOPTNB is the blocking used by the QR or LQ @@ -300,13 +301,14 @@ *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) -*> On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. +*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. *> \endverbatim *> *> \param[in] LIWORK *> \verbatim *> LIWORK is INTEGER -*> The dimension of the array IWORK. LIWORK >= max(1,10*N). +*> The dimension of the array IWORK. +*> If N <= 1, LIWORK >= 1, else LIWORK >= 10*N. *> *> If LIWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal size of the IWORK array, @@ -330,7 +332,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYeigen +*> \ingroup heevr_2stage * *> \par Contributors: * ================== @@ -358,7 +360,7 @@ *> http://doi.acm.org/10.1145/2063384.2063394 *> *> A. Haidar, J. Kurzak, P. Luszczek, 2013. -*> An improved parallel singular value algorithm and its implementation +*> An improved parallel singular value algorithm and its implementation *> for multicore hardware, In Proceedings of 2013 International Conference *> for High Performance Computing, Networking, Storage and Analysis (SC '13). *> Denver, Colorado, USA, 2013. @@ -366,11 +368,11 @@ *> http://doi.acm.org/10.1145/2503210.2503292 *> *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. -*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure +*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure *> calculations based on fine-grained memory aware tasks. *> International Journal of High Performance Computing Applications. *> Volume 28 Issue 2, Pages 196-209, May 2014. -*> http://hpc.sagepub.com/content/28/2/196 +*> http://hpc.sagepub.com/content/28/2/196 *> *> \endverbatim * @@ -444,8 +446,14 @@ SUBROUTINE DSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IB = ILAENV2STAGE( 2, 'DSYTRD_2STAGE', JOBZ, N, KD, -1, -1 ) LHTRD = ILAENV2STAGE( 3, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1 ) LWTRD = ILAENV2STAGE( 4, 'DSYTRD_2STAGE', JOBZ, N, KD, IB, -1 ) - LWMIN = MAX( 26*N, 5*N + LHTRD + LWTRD ) - LIWMIN = MAX( 1, 10*N ) +* + IF( N.LE.1 ) THEN + LWMIN = 1 + LIWMIN = 1 + ELSE + LWMIN = MAX( 26*N, 5*N + LHTRD + LWTRD ) + LIWMIN = 10*N + END IF * INFO = 0 IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN @@ -484,7 +492,7 @@ SUBROUTINE DSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, * NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 ) * NB = MAX( NB, ILAENV( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) ) * LWKOPT = MAX( ( NB+1 )*N, LWMIN ) - WORK( 1 ) = LWMIN + WORK( 1 ) = LWMIN IWORK( 1 ) = LIWMIN END IF * @@ -504,7 +512,7 @@ SUBROUTINE DSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, END IF * IF( N.EQ.1 ) THEN - WORK( 1 ) = 7 + WORK( 1 ) = 1 IF( ALLEIG .OR. INDEIG ) THEN M = 1 W( 1 ) = A( 1, 1 ) @@ -608,7 +616,7 @@ SUBROUTINE DSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, * Call DSYTRD_2STAGE to reduce symmetric matrix to tridiagonal form. * * - CALL DSYTRD_2STAGE( JOBZ, UPLO, N, A, LDA, WORK( INDD ), + CALL DSYTRD_2STAGE( JOBZ, UPLO, N, A, LDA, WORK( INDD ), $ WORK( INDE ), WORK( INDTAU ), WORK( INDHOUS ), $ LHTRD, WORK( INDWK ), LLWORK, IINFO ) * @@ -727,7 +735,7 @@ SUBROUTINE DSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, * * Set WORK(1) to optimal workspace size. * - WORK( 1 ) = LWMIN + WORK( 1 ) = LWMIN IWORK( 1 ) = LIWMIN * RETURN diff --git a/lapack-netlib/SRC/dsyevx.f b/lapack-netlib/SRC/dsyevx.f index 99719874b5..fd6a78e320 100644 --- a/lapack-netlib/SRC/dsyevx.f +++ b/lapack-netlib/SRC/dsyevx.f @@ -244,7 +244,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYeigen +*> \ingroup heevx * * ===================================================================== SUBROUTINE DSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, @@ -338,14 +338,14 @@ SUBROUTINE DSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, IF( INFO.EQ.0 ) THEN IF( N.LE.1 ) THEN LWKMIN = 1 - WORK( 1 ) = LWKMIN + LWKOPT = 1 ELSE LWKMIN = 8*N NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 ) NB = MAX( NB, ILAENV( 1, 'DORMTR', UPLO, N, -1, -1, -1 ) ) LWKOPT = MAX( LWKMIN, ( NB + 3 )*N ) - WORK( 1 ) = LWKOPT END IF + WORK( 1 ) = LWKOPT * IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) $ INFO = -17 diff --git a/lapack-netlib/SRC/dsysv_aa.f b/lapack-netlib/SRC/dsysv_aa.f index 8dab5a384d..0a96ecd7e5 100644 --- a/lapack-netlib/SRC/dsysv_aa.f +++ b/lapack-netlib/SRC/dsysv_aa.f @@ -154,7 +154,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYsolve +*> \ingroup hesv_aa * * ===================================================================== SUBROUTINE DSYSV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, @@ -177,7 +177,7 @@ SUBROUTINE DSYSV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, * * .. Local Scalars .. LOGICAL LQUERY - INTEGER LWKOPT, LWKOPT_SYTRF, LWKOPT_SYTRS + INTEGER LWKMIN, LWKOPT, LWKOPT_SYTRF, LWKOPT_SYTRS * .. * .. External Functions .. LOGICAL LSAME @@ -196,6 +196,7 @@ SUBROUTINE DSYSV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) + LWKMIN = MAX( 1, 2*N, 3*N-2 ) IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN @@ -206,17 +207,17 @@ SUBROUTINE DSYSV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 - ELSE IF( LWORK.LT.MAX(2*N, 3*N-2) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -10 END IF * IF( INFO.EQ.0 ) THEN CALL DSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, -1, INFO ) - LWKOPT_SYTRF = INT( WORK(1) ) + LWKOPT_SYTRF = INT( WORK( 1 ) ) CALL DSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, $ -1, INFO ) - LWKOPT_SYTRS = INT( WORK(1) ) - LWKOPT = MAX( LWKOPT_SYTRF, LWKOPT_SYTRS ) + LWKOPT_SYTRS = INT( WORK( 1 ) ) + LWKOPT = MAX( LWKMIN, LWKOPT_SYTRF, LWKOPT_SYTRS ) WORK( 1 ) = LWKOPT END IF * diff --git a/lapack-netlib/SRC/dsysv_aa_2stage.f b/lapack-netlib/SRC/dsysv_aa_2stage.f index 72fbe1e9a8..90dd0a38ae 100644 --- a/lapack-netlib/SRC/dsysv_aa_2stage.f +++ b/lapack-netlib/SRC/dsysv_aa_2stage.f @@ -101,14 +101,14 @@ *> *> \param[out] TB *> \verbatim -*> TB is DOUBLE PRECISION array, dimension (LTB) +*> TB is DOUBLE PRECISION array, dimension (MAX(1,LTB)) *> On exit, details of the LU factorization of the band matrix. *> \endverbatim *> *> \param[in] LTB *> \verbatim *> LTB is INTEGER -*> The size of the array TB. LTB >= 4*N, internally +*> The size of the array TB. LTB >= MAX(1,4*N), internally *> used to select NB such that LTB >= (3*NB+1)*N. *> *> If LTB = -1, then a workspace query is assumed; the @@ -148,14 +148,15 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION workspace of size LWORK +*> WORK is DOUBLE PRECISION workspace of size (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The size of WORK. LWORK >= N, internally used to select NB -*> such that LWORK >= N*NB. +*> The size of WORK. LWORK >= MAX(1,N), internally used to +*> select NB such that LWORK >= N*NB. *> *> If LWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal size of the WORK array, @@ -179,7 +180,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYsolve +*> \ingroup hesv_aa_2stage * * ===================================================================== SUBROUTINE DSYSV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, @@ -205,7 +206,7 @@ SUBROUTINE DSYSV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, * * .. Local Scalars .. LOGICAL UPPER, TQUERY, WQUERY - INTEGER LWKOPT + INTEGER LWKMIN, LWKOPT * .. * .. External Functions .. LOGICAL LSAME @@ -226,6 +227,7 @@ SUBROUTINE DSYSV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, UPPER = LSAME( UPLO, 'U' ) WQUERY = ( LWORK.EQ.-1 ) TQUERY = ( LTB.EQ.-1 ) + LWKMIN = MAX( 1, N ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN @@ -234,18 +236,19 @@ SUBROUTINE DSYSV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 - ELSE IF( LTB.LT.( 4*N ) .AND. .NOT.TQUERY ) THEN + ELSE IF( LTB.LT.MAX( 1, 4*N ) .AND. .NOT.TQUERY ) THEN INFO = -7 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -11 - ELSE IF( LWORK.LT.N .AND. .NOT.WQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.WQUERY ) THEN INFO = -13 END IF * IF( INFO.EQ.0 ) THEN CALL DSYTRF_AA_2STAGE( UPLO, N, A, LDA, TB, -1, IPIV, $ IPIV2, WORK, -1, INFO ) - LWKOPT = INT( WORK(1) ) + LWKOPT = MAX( LWKMIN, INT( WORK( 1 ) ) ) + WORK( 1 ) = LWKOPT END IF * IF( INFO.NE.0 ) THEN @@ -255,7 +258,6 @@ SUBROUTINE DSYSV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, RETURN END IF * -* * Compute the factorization A = U**T*T*U or A = L*T*L**T. * CALL DSYTRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, IPIV2, diff --git a/lapack-netlib/SRC/dsysvx.f b/lapack-netlib/SRC/dsysvx.f index a30831e726..b2b8210ca4 100644 --- a/lapack-netlib/SRC/dsysvx.f +++ b/lapack-netlib/SRC/dsysvx.f @@ -275,7 +275,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYsolve +*> \ingroup hesvx * * ===================================================================== SUBROUTINE DSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, @@ -305,7 +305,7 @@ SUBROUTINE DSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, * .. * .. Local Scalars .. LOGICAL LQUERY, NOFACT - INTEGER LWKOPT, NB + INTEGER LWKMIN, LWKOPT, NB DOUBLE PRECISION ANORM * .. * .. External Functions .. @@ -327,6 +327,7 @@ SUBROUTINE DSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, INFO = 0 NOFACT = LSAME( FACT, 'N' ) LQUERY = ( LWORK.EQ.-1 ) + LWKMIN = MAX( 1, 3*N ) IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN INFO = -1 ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) @@ -344,12 +345,12 @@ SUBROUTINE DSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, INFO = -11 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -13 - ELSE IF( LWORK.LT.MAX( 1, 3*N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -18 END IF * IF( INFO.EQ.0 ) THEN - LWKOPT = MAX( 1, 3*N ) + LWKOPT = LWKMIN IF( NOFACT ) THEN NB = ILAENV( 1, 'DSYTRF', UPLO, N, -1, -1, -1 ) LWKOPT = MAX( LWKOPT, N*NB ) diff --git a/lapack-netlib/SRC/dsytrd.f b/lapack-netlib/SRC/dsytrd.f index 3dcfc3db2b..58d4b633b8 100644 --- a/lapack-netlib/SRC/dsytrd.f +++ b/lapack-netlib/SRC/dsytrd.f @@ -139,7 +139,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYcomputational +*> \ingroup hetrd * *> \par Further Details: * ===================== @@ -247,7 +247,7 @@ SUBROUTINE DSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO ) * Determine the block size. * NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 ) - LWKOPT = N*NB + LWKOPT = MAX( 1, N*NB ) WORK( 1 ) = LWKOPT END IF * diff --git a/lapack-netlib/SRC/dsytrd_2stage.f b/lapack-netlib/SRC/dsytrd_2stage.f index 8ae77d3e4b..a88ac1c73f 100644 --- a/lapack-netlib/SRC/dsytrd_2stage.f +++ b/lapack-netlib/SRC/dsytrd_2stage.f @@ -4,23 +4,23 @@ * * =========== DOCUMENTATION =========== * -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ * *> \htmlonly -*> Download DSYTRD_2STAGE + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> +*> Download DSYTRD_2STAGE + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> *> [TXT] -*> \endhtmlonly +*> \endhtmlonly * * Definition: * =========== * -* SUBROUTINE DSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, +* SUBROUTINE DSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, * HOUS2, LHOUS2, WORK, LWORK, INFO ) * * IMPLICIT NONE @@ -34,7 +34,7 @@ * DOUBLE PRECISION A( LDA, * ), TAU( * ), * HOUS2( * ), WORK( * ) * .. -* +* * *> \par Purpose: * ============= @@ -52,11 +52,11 @@ *> \param[in] VECT *> \verbatim *> VECT is CHARACTER*1 -*> = 'N': No need for the Housholder representation, +*> = 'N': No need for the Housholder representation, *> in particular for the second stage (Band to *> tridiagonal) and thus LHOUS2 is of size max(1, 4*N); -*> = 'V': the Householder representation is needed to -*> either generate Q1 Q2 or to apply Q1 Q2, +*> = 'V': the Householder representation is needed to +*> either generate Q1 Q2 or to apply Q1 Q2, *> then LHOUS2 is to be queried and computed. *> (NOT AVAILABLE IN THIS RELEASE). *> \endverbatim @@ -86,7 +86,7 @@ *> triangular part of A is not referenced. *> On exit, if UPLO = 'U', the band superdiagonal *> of A are overwritten by the corresponding elements of the -*> internal band-diagonal matrix AB, and the elements above +*> internal band-diagonal matrix AB, and the elements above *> the KD superdiagonal, with the array TAU, represent the orthogonal *> matrix Q1 as a product of elementary reflectors; if UPLO *> = 'L', the diagonal and band subdiagonal of A are over- @@ -117,13 +117,13 @@ *> \param[out] TAU *> \verbatim *> TAU is DOUBLE PRECISION array, dimension (N-KD) -*> The scalar factors of the elementary reflectors of +*> The scalar factors of the elementary reflectors of *> the first stage (see Further Details). *> \endverbatim *> *> \param[out] HOUS2 *> \verbatim -*> HOUS2 is DOUBLE PRECISION array, dimension (LHOUS2) +*> HOUS2 is DOUBLE PRECISION array, dimension (MAX(1,LHOUS2)) *> Stores the Householder representation of the stage2 *> band to tridiagonal. *> \endverbatim @@ -132,6 +132,8 @@ *> \verbatim *> LHOUS2 is INTEGER *> The dimension of the array HOUS2. +*> LHOUS2 >= 1. +*> *> If LWORK = -1, or LHOUS2 = -1, *> then a query is assumed; the routine *> only calculates the optimal size of the HOUS2 array, returns @@ -143,23 +145,26 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, dimension (LWORK) +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK = MAX(1, dimension) -*> If LWORK = -1, or LHOUS2=-1, +*> The dimension of the array WORK. +*> If N = 0, LWORK >= 1, else LWORK = MAX(1, dimension). +*> +*> If LWORK = -1, or LHOUS2 = -1, *> then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> LWORK = MAX(1, dimension) where *> dimension = max(stage1,stage2) + (KD+1)*N -*> = N*KD + N*max(KD+1,FACTOPTNB) -*> + max(2*KD*KD, KD*NTHREADS) -*> + (KD+1)*N +*> = N*KD + N*max(KD+1,FACTOPTNB) +*> + max(2*KD*KD, KD*NTHREADS) +*> + (KD+1)*N *> where KD is the blocking size of the reduction, *> FACTOPTNB is the blocking used by the QR or LQ *> algorithm, usually FACTOPTNB=128 is a good choice @@ -177,12 +182,12 @@ * Authors: * ======== * -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. * -*> \ingroup doubleSYcomputational +*> \ingroup hetrd_2stage * *> \par Further Details: * ===================== @@ -202,7 +207,7 @@ *> http://doi.acm.org/10.1145/2063384.2063394 *> *> A. Haidar, J. Kurzak, P. Luszczek, 2013. -*> An improved parallel singular value algorithm and its implementation +*> An improved parallel singular value algorithm and its implementation *> for multicore hardware, In Proceedings of 2013 International Conference *> for High Performance Computing, Networking, Storage and Analysis (SC '13). *> Denver, Colorado, USA, 2013. @@ -210,16 +215,16 @@ *> http://doi.acm.org/10.1145/2503210.2503292 *> *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. -*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure +*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure *> calculations based on fine-grained memory aware tasks. *> International Journal of High Performance Computing Applications. *> Volume 28 Issue 2, Pages 196-209, May 2014. -*> http://hpc.sagepub.com/content/28/2/196 +*> http://hpc.sagepub.com/content/28/2/196 *> *> \endverbatim *> * ===================================================================== - SUBROUTINE DSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, + SUBROUTINE DSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, $ HOUS2, LHOUS2, WORK, LWORK, INFO ) * IMPLICIT NONE @@ -265,10 +270,13 @@ SUBROUTINE DSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, * KD = ILAENV2STAGE( 1, 'DSYTRD_2STAGE', VECT, N, -1, -1, -1 ) IB = ILAENV2STAGE( 2, 'DSYTRD_2STAGE', VECT, N, KD, -1, -1 ) - LHMIN = ILAENV2STAGE( 3, 'DSYTRD_2STAGE', VECT, N, KD, IB, -1 ) - LWMIN = ILAENV2STAGE( 4, 'DSYTRD_2STAGE', VECT, N, KD, IB, -1 ) -* WRITE(*,*),'DSYTRD_2STAGE N KD UPLO LHMIN LWMIN ',N, KD, UPLO, -* $ LHMIN, LWMIN + IF( N.EQ.0 ) THEN + LHMIN = 1 + LWMIN = 1 + ELSE + LHMIN = ILAENV2STAGE( 3, 'DSYTRD_2STAGE', VECT, N, KD, IB, -1 ) + LWMIN = ILAENV2STAGE( 4, 'DSYTRD_2STAGE', VECT, N, KD, IB, -1 ) + END IF * IF( .NOT.LSAME( VECT, 'N' ) ) THEN INFO = -1 @@ -309,14 +317,14 @@ SUBROUTINE DSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, LWRK = LWORK-LDAB*N ABPOS = 1 WPOS = ABPOS + LDAB*N - CALL DSYTRD_SY2SB( UPLO, N, KD, A, LDA, WORK( ABPOS ), LDAB, + CALL DSYTRD_SY2SB( UPLO, N, KD, A, LDA, WORK( ABPOS ), LDAB, $ TAU, WORK( WPOS ), LWRK, INFO ) IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSYTRD_SY2SB', -INFO ) RETURN END IF - CALL DSYTRD_SB2ST( 'Y', VECT, UPLO, N, KD, - $ WORK( ABPOS ), LDAB, D, E, + CALL DSYTRD_SB2ST( 'Y', VECT, UPLO, N, KD, + $ WORK( ABPOS ), LDAB, D, E, $ HOUS2, LHOUS2, WORK( WPOS ), LWRK, INFO ) IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSYTRD_SB2ST', -INFO ) @@ -324,8 +332,7 @@ SUBROUTINE DSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, END IF * * - HOUS2( 1 ) = LHMIN - WORK( 1 ) = LWMIN + WORK( 1 ) = LWMIN RETURN * * End of DSYTRD_2STAGE diff --git a/lapack-netlib/SRC/dsytrd_sb2st.F b/lapack-netlib/SRC/dsytrd_sb2st.F index bb74dd4914..04d03d587a 100644 --- a/lapack-netlib/SRC/dsytrd_sb2st.F +++ b/lapack-netlib/SRC/dsytrd_sb2st.F @@ -18,7 +18,7 @@ * Definition: * =========== * -* SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, +* SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * D, E, HOUS, LHOUS, WORK, LWORK, INFO ) * * #if defined(_OPENMP) @@ -53,12 +53,12 @@ *> \param[in] STAGE1 *> \verbatim *> STAGE1 is CHARACTER*1 -*> = 'N': "No": to mention that the stage 1 of the reduction +*> = 'N': "No": to mention that the stage 1 of the reduction *> from dense to band using the dsytrd_sy2sb routine -*> was not called before this routine to reproduce AB. -*> In other term this routine is called as standalone. -*> = 'Y': "Yes": to mention that the stage 1 of the -*> reduction from dense to band using the dsytrd_sy2sb +*> was not called before this routine to reproduce AB. +*> In other term this routine is called as standalone. +*> = 'Y': "Yes": to mention that the stage 1 of the +*> reduction from dense to band using the dsytrd_sy2sb *> routine has been called to produce AB (e.g., AB is *> the output of dsytrd_sy2sb. *> \endverbatim @@ -66,10 +66,10 @@ *> \param[in] VECT *> \verbatim *> VECT is CHARACTER*1 -*> = 'N': No need for the Housholder representation, +*> = 'N': No need for the Housholder representation, *> and thus LHOUS is of size max(1, 4*N); -*> = 'V': the Householder representation is needed to -*> either generate or to apply Q later on, +*> = 'V': the Householder representation is needed to +*> either generate or to apply Q later on, *> then LHOUS is to be queried and computed. *> (NOT AVAILABLE IN THIS RELEASE). *> \endverbatim @@ -132,34 +132,39 @@ *> *> \param[out] HOUS *> \verbatim -*> HOUS is DOUBLE PRECISION array, dimension LHOUS, that -*> store the Householder representation. +*> HOUS is DOUBLE PRECISION array, dimension (MAX(1,LHOUS)) +*> Stores the Householder representation. *> \endverbatim *> *> \param[in] LHOUS *> \verbatim *> LHOUS is INTEGER -*> The dimension of the array HOUS. LHOUS = MAX(1, dimension) -*> If LWORK = -1, or LHOUS=-1, +*> The dimension of the array HOUS. +*> If N = 0 or KD <= 1, LHOUS >= 1, else LHOUS = MAX(1, dimension). +*> +*> If LWORK = -1, or LHOUS = -1, *> then a query is assumed; the routine *> only calculates the optimal size of the HOUS array, returns *> this value as the first entry of the HOUS array, and no error *> message related to LHOUS is issued by XERBLA. *> LHOUS = MAX(1, dimension) where *> dimension = 4*N if VECT='N' -*> not available now if VECT='H' +*> not available now if VECT='H' *> \endverbatim *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, dimension LWORK. +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK = MAX(1, dimension) -*> If LWORK = -1, or LHOUS=-1, +*> The dimension of the array WORK. +*> If N = 0 or KD <= 1, LWORK >= 1, else LWORK = MAX(1, dimension). +*> +*> If LWORK = -1, or LHOUS = -1, *> then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error @@ -188,7 +193,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup real16OTHERcomputational +*> \ingroup hetrd_hb2st * *> \par Further Details: * ===================== @@ -208,7 +213,7 @@ *> http://doi.acm.org/10.1145/2063384.2063394 *> *> A. Haidar, J. Kurzak, P. Luszczek, 2013. -*> An improved parallel singular value algorithm and its implementation +*> An improved parallel singular value algorithm and its implementation *> for multicore hardware, In Proceedings of 2013 International Conference *> for High Performance Computing, Networking, Storage and Analysis (SC '13). *> Denver, Colorado, USA, 2013. @@ -216,16 +221,16 @@ *> http://doi.acm.org/10.1145/2503210.2503292 *> *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. -*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure +*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure *> calculations based on fine-grained memory aware tasks. *> International Journal of High Performance Computing Applications. *> Volume 28 Issue 2, Pages 196-209, May 2014. -*> http://hpc.sagepub.com/content/28/2/196 +*> http://hpc.sagepub.com/content/28/2/196 *> *> \endverbatim *> * ===================================================================== - SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, + SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, $ D, E, HOUS, LHOUS, WORK, LWORK, INFO ) * #if defined(_OPENMP) @@ -258,11 +263,11 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * .. * .. Local Scalars .. LOGICAL LQUERY, WANTQ, UPPER, AFTERS1 - INTEGER I, M, K, IB, SWEEPID, MYID, SHIFT, STT, ST, + INTEGER I, M, K, IB, SWEEPID, MYID, SHIFT, STT, ST, $ ED, STIND, EDIND, BLKLASTIND, COLPT, THED, $ STEPERCOL, GRSIZ, THGRSIZ, THGRNB, THGRID, - $ NBTILES, TTYPE, TID, NTHREADS, DEBUG, - $ ABDPOS, ABOFDPOS, DPOS, OFDPOS, AWPOS, + $ NBTILES, TTYPE, TID, NTHREADS, + $ ABDPOS, ABOFDPOS, DPOS, OFDPOS, AWPOS, $ INDA, INDW, APOS, SIZEA, LDA, INDV, INDTAU, $ SIDEV, SIZETAU, LDV, LHMIN, LWMIN * .. @@ -274,7 +279,7 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * .. * .. External Functions .. LOGICAL LSAME - INTEGER ILAENV2STAGE + INTEGER ILAENV2STAGE EXTERNAL LSAME, ILAENV2STAGE * .. * .. Executable Statements .. @@ -282,7 +287,6 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * Determine the minimal workspace size required. * Test the input parameters * - DEBUG = 0 INFO = 0 AFTERS1 = LSAME( STAGE1, 'Y' ) WANTQ = LSAME( VECT, 'V' ) @@ -291,9 +295,14 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * * Determine the block size, the workspace size and the hous size. * - IB = ILAENV2STAGE( 2, 'DSYTRD_SB2ST', VECT, N, KD, -1, -1 ) - LHMIN = ILAENV2STAGE( 3, 'DSYTRD_SB2ST', VECT, N, KD, IB, -1 ) - LWMIN = ILAENV2STAGE( 4, 'DSYTRD_SB2ST', VECT, N, KD, IB, -1 ) + IB = ILAENV2STAGE( 2, 'DSYTRD_SB2ST', VECT, N, KD, -1, -1 ) + IF( N.EQ.0 .OR. KD.LE.1 ) THEN + LHMIN = 1 + LWMIN = 1 + ELSE + LHMIN = ILAENV2STAGE( 3, 'DSYTRD_SB2ST', VECT, N, KD, IB, -1 ) + LWMIN = ILAENV2STAGE( 4, 'DSYTRD_SB2ST', VECT, N, KD, IB, -1 ) + END IF * IF( .NOT.AFTERS1 .AND. .NOT.LSAME( STAGE1, 'N' ) ) THEN INFO = -1 @@ -355,7 +364,7 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, ABDPOS = KD + 1 ABOFDPOS = KD ELSE - APOS = INDA + APOS = INDA AWPOS = INDA + KD + 1 DPOS = APOS OFDPOS = DPOS + 1 @@ -363,11 +372,11 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, ABOFDPOS = 2 ENDIF -* -* Case KD=0: -* The matrix is diagonal. We just copy it (convert to "real" for -* real because D is double and the imaginary part should be 0) -* and store it in D. A sequential code here is better or +* +* Case KD=0: +* The matrix is diagonal. We just copy it (convert to "real" for +* real because D is double and the imaginary part should be 0) +* and store it in D. A sequential code here is better or * in a parallel environment it might need two cores for D and E * IF( KD.EQ.0 ) THEN @@ -382,17 +391,17 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, WORK( 1 ) = 1 RETURN END IF -* -* Case KD=1: -* The matrix is already Tridiagonal. We have to make diagonal +* +* Case KD=1: +* The matrix is already Tridiagonal. We have to make diagonal * and offdiagonal elements real, and store them in D and E. -* For that, for real precision just copy the diag and offdiag -* to D and E while for the COMPLEX case the bulge chasing is -* performed to convert the hermetian tridiagonal to symmetric -* tridiagonal. A simpler conversion formula might be used, but then +* For that, for real precision just copy the diag and offdiag +* to D and E while for the COMPLEX case the bulge chasing is +* performed to convert the hermetian tridiagonal to symmetric +* tridiagonal. A simpler conversion formula might be used, but then * updating the Q matrix will be required and based if Q is generated -* or not this might complicate the story. -* +* or not this might complicate the story. +* IF( KD.EQ.1 ) THEN DO 50 I = 1, N D( I ) = ( AB( ABDPOS, I ) ) @@ -413,7 +422,7 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, RETURN END IF * -* Main code start here. +* Main code start here. * Reduce the symmetric band of A to a tridiagonal matrix. * THGRSIZ = N @@ -422,7 +431,7 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, NBTILES = CEILING( REAL(N)/REAL(KD) ) STEPERCOL = CEILING( REAL(SHIFT)/REAL(GRSIZ) ) THGRNB = CEILING( REAL(N-1)/REAL(THGRSIZ) ) -* +* CALL DLACPY( "A", KD+1, N, AB, LDAB, WORK( APOS ), LDA ) CALL DLASET( "A", KD, N, ZERO, ZERO, WORK( AWPOS ), LDA ) * @@ -431,7 +440,7 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * #if defined(_OPENMP) !$OMP PARALLEL PRIVATE( TID, THGRID, BLKLASTIND ) -!$OMP$ PRIVATE( THED, I, M, K, ST, ED, STT, SWEEPID ) +!$OMP$ PRIVATE( THED, I, M, K, ST, ED, STT, SWEEPID ) !$OMP$ PRIVATE( MYID, TTYPE, COLPT, STIND, EDIND ) !$OMP$ SHARED ( UPLO, WANTQ, INDV, INDTAU, HOUS, WORK) !$OMP$ SHARED ( N, KD, IB, NBTILES, LDA, LDV, INDA ) @@ -440,7 +449,7 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, #endif * * main bulge chasing loop -* +* DO 100 THGRID = 1, THGRNB STT = (THGRID-1)*THGRSIZ+1 THED = MIN( (STT + THGRSIZ -1), (N-1)) @@ -451,7 +460,7 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, ST = STT DO 130 SWEEPID = ST, ED DO 140 K = 1, GRSIZ - MYID = (I-SWEEPID)*(STEPERCOL*GRSIZ) + MYID = (I-SWEEPID)*(STEPERCOL*GRSIZ) $ + (M-1)*GRSIZ + K IF ( MYID.EQ.1 ) THEN TTYPE = 1 @@ -477,16 +486,16 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, ENDIF * * Call the kernel -* +* #if defined(_OPENMP) && _OPENMP >= 201307 - IF( TTYPE.NE.1 ) THEN + IF( TTYPE.NE.1 ) THEN !$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1)) !$OMP$ DEPEND(in:WORK(MYID-1)) !$OMP$ DEPEND(out:WORK(MYID)) TID = OMP_GET_THREAD_NUM() - CALL DSB2ST_KERNELS( UPLO, WANTQ, TTYPE, + CALL DSB2ST_KERNELS( UPLO, WANTQ, TTYPE, $ STIND, EDIND, SWEEPID, N, KD, IB, - $ WORK ( INDA ), LDA, + $ WORK ( INDA ), LDA, $ HOUS( INDV ), HOUS( INDTAU ), LDV, $ WORK( INDW + TID*KD ) ) !$OMP END TASK @@ -494,20 +503,20 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, !$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1)) !$OMP$ DEPEND(out:WORK(MYID)) TID = OMP_GET_THREAD_NUM() - CALL DSB2ST_KERNELS( UPLO, WANTQ, TTYPE, + CALL DSB2ST_KERNELS( UPLO, WANTQ, TTYPE, $ STIND, EDIND, SWEEPID, N, KD, IB, - $ WORK ( INDA ), LDA, + $ WORK ( INDA ), LDA, $ HOUS( INDV ), HOUS( INDTAU ), LDV, $ WORK( INDW + TID*KD ) ) !$OMP END TASK ENDIF #else - CALL DSB2ST_KERNELS( UPLO, WANTQ, TTYPE, + CALL DSB2ST_KERNELS( UPLO, WANTQ, TTYPE, $ STIND, EDIND, SWEEPID, N, KD, IB, - $ WORK ( INDA ), LDA, + $ WORK ( INDA ), LDA, $ HOUS( INDV ), HOUS( INDTAU ), LDV, $ WORK( INDW ) ) -#endif +#endif IF ( BLKLASTIND.GE.(N-1) ) THEN STT = STT + 1 EXIT @@ -522,14 +531,14 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, !$OMP END MASTER !$OMP END PARALLEL #endif -* +* * Copy the diagonal from A to D. Note that D is REAL thus only * the Real part is needed, the imaginary part should be zero. * DO 150 I = 1, N D( I ) = ( WORK( DPOS+(I-1)*LDA ) ) 150 CONTINUE -* +* * Copy the off diagonal from A to E. Note that E is REAL thus only * the Real part is needed, the imaginary part should be zero. * @@ -543,11 +552,10 @@ SUBROUTINE DSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, 170 CONTINUE ENDIF * - HOUS( 1 ) = LHMIN WORK( 1 ) = LWMIN RETURN * * End of DSYTRD_SB2ST * END - + diff --git a/lapack-netlib/SRC/dsytrd_sy2sb.f b/lapack-netlib/SRC/dsytrd_sy2sb.f index 1660b5c7e3..38acc71f1f 100644 --- a/lapack-netlib/SRC/dsytrd_sy2sb.f +++ b/lapack-netlib/SRC/dsytrd_sy2sb.f @@ -123,8 +123,8 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, dimension (LWORK) -*> On exit, if INFO = 0, or if LWORK=-1, +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, or if LWORK = -1, *> WORK(1) returns the size of LWORK. *> \endverbatim *> @@ -132,7 +132,9 @@ *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK which should be calculated -*> by a workspace query. LWORK = MAX(1, LWORK_QUERY) +*> by a workspace query. +*> If N <= KD+1, LWORK >= 1, else LWORK = MAX(1, LWORK_QUERY) +*> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error @@ -158,7 +160,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYcomputational +*> \ingroup hetrd_he2hb * *> \par Further Details: * ===================== @@ -293,8 +295,12 @@ SUBROUTINE DSYTRD_SY2SB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) - LWMIN = ILAENV2STAGE( 4, 'DSYTRD_SY2SB', '', N, KD, -1, -1 ) - + IF( N.LE.KD+1 ) THEN + LWMIN = 1 + ELSE + LWMIN = ILAENV2STAGE( 4, 'DSYTRD_SY2SB', ' ', N, KD, -1, -1 ) + END IF +* IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN diff --git a/lapack-netlib/SRC/dsytrf.f b/lapack-netlib/SRC/dsytrf.f index aee9b3f6ac..2a1a2d4dc4 100644 --- a/lapack-netlib/SRC/dsytrf.f +++ b/lapack-netlib/SRC/dsytrf.f @@ -107,7 +107,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >=1. For best performance +*> The length of WORK. LWORK >= 1. For best performance *> LWORK >= N*NB, where NB is the block size returned by ILAENV. *> *> If LWORK = -1, then a workspace query is assumed; the routine @@ -135,7 +135,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYcomputational +*> \ingroup hetrf * *> \par Further Details: * ===================== @@ -352,6 +352,7 @@ SUBROUTINE DSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) END IF * 40 CONTINUE +* WORK( 1 ) = LWKOPT RETURN * diff --git a/lapack-netlib/SRC/dsytrf_aa.f b/lapack-netlib/SRC/dsytrf_aa.f index 9a0b26ce53..924d4c1650 100644 --- a/lapack-netlib/SRC/dsytrf_aa.f +++ b/lapack-netlib/SRC/dsytrf_aa.f @@ -101,8 +101,10 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >= MAX(1,2*N). For optimum performance -*> LWORK >= N*(1+NB), where NB is the optimal blocksize. +*> The length of WORK. +*> LWORK >= 1, if N <= 1, and LWORK >= 2*N, otherwise. +*> For optimum performance LWORK >= N*(1+NB), where NB is +*> the optimal blocksize, returned by ILAENV. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -125,10 +127,10 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYcomputational +*> \ingroup hetrf_aa * * ===================================================================== - SUBROUTINE DSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) + SUBROUTINE DSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- @@ -152,7 +154,7 @@ SUBROUTINE DSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) * * .. Local Scalars .. LOGICAL LQUERY, UPPER - INTEGER J, LWKOPT + INTEGER J, LWKMIN, LWKOPT INTEGER NB, MJ, NJ, K1, K2, J1, J2, J3, JB DOUBLE PRECISION ALPHA * .. @@ -179,18 +181,25 @@ SUBROUTINE DSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) + IF( N.LE.1 ) THEN + LWKMIN = 1 + LWKOPT = 1 + ELSE + LWKMIN = 2*N + LWKOPT = (NB+1)*N + END IF +* IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -7 END IF * IF( INFO.EQ.0 ) THEN - LWKOPT = (NB+1)*N WORK( 1 ) = LWKOPT END IF * @@ -203,11 +212,11 @@ SUBROUTINE DSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) * * Quick return * - IF ( N.EQ.0 ) THEN + IF( N.EQ.0 ) THEN RETURN ENDIF IPIV( 1 ) = 1 - IF ( N.EQ.1 ) THEN + IF( N.EQ.1 ) THEN RETURN END IF * diff --git a/lapack-netlib/SRC/dsytrf_aa_2stage.f b/lapack-netlib/SRC/dsytrf_aa_2stage.f index c65bd86e62..fae95bab24 100644 --- a/lapack-netlib/SRC/dsytrf_aa_2stage.f +++ b/lapack-netlib/SRC/dsytrf_aa_2stage.f @@ -87,14 +87,14 @@ *> *> \param[out] TB *> \verbatim -*> TB is DOUBLE PRECISION array, dimension (LTB) +*> TB is DOUBLE PRECISION array, dimension (MAX(1,LTB)) *> On exit, details of the LU factorization of the band matrix. *> \endverbatim *> *> \param[in] LTB *> \verbatim *> LTB is INTEGER -*> The size of the array TB. LTB >= 4*N, internally +*> The size of the array TB. LTB >= MAX(1,4*N), internally *> used to select NB such that LTB >= (3*NB+1)*N. *> *> If LTB = -1, then a workspace query is assumed; the @@ -121,14 +121,14 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION workspace of size LWORK +*> WORK is DOUBLE PRECISION workspace of size (MAX(1,LWORK)) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The size of WORK. LWORK >= N, internally used to select NB -*> such that LWORK >= N*NB. +*> The size of WORK. LWORK >= MAX(1,N), internally used +*> to select NB such that LWORK >= N*NB. *> *> If LWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal size of the WORK array, @@ -152,7 +152,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYcomputational +*> \ingroup hetrf_aa_2stage * * ===================================================================== SUBROUTINE DSYTRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, @@ -211,9 +211,9 @@ SUBROUTINE DSYTRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF ( LTB .LT. 4*N .AND. .NOT.TQUERY ) THEN + ELSE IF( LTB.LT.MAX( 1, 4*N ) .AND. .NOT.TQUERY ) THEN INFO = -6 - ELSE IF ( LWORK .LT. N .AND. .NOT.WQUERY ) THEN + ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.WQUERY ) THEN INFO = -10 END IF * @@ -227,10 +227,10 @@ SUBROUTINE DSYTRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, NB = ILAENV( 1, 'DSYTRF_AA_2STAGE', UPLO, N, -1, -1, -1 ) IF( INFO.EQ.0 ) THEN IF( TQUERY ) THEN - TB( 1 ) = (3*NB+1)*N + TB( 1 ) = MAX( 1, (3*NB+1)*N ) END IF IF( WQUERY ) THEN - WORK( 1 ) = N*NB + WORK( 1 ) = MAX( 1, N*NB ) END IF END IF IF( TQUERY .OR. WQUERY ) THEN @@ -239,7 +239,7 @@ SUBROUTINE DSYTRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, * * Quick return * - IF ( N.EQ.0 ) THEN + IF( N.EQ.0 ) THEN RETURN ENDIF * diff --git a/lapack-netlib/SRC/dsytrf_rk.f b/lapack-netlib/SRC/dsytrf_rk.f index 0865869684..0717eb0765 100644 --- a/lapack-netlib/SRC/dsytrf_rk.f +++ b/lapack-netlib/SRC/dsytrf_rk.f @@ -177,14 +177,14 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, dimension ( MAX(1,LWORK) ). +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)). *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >=1. For best performance +*> The length of WORK. LWORK >= 1. For best performance *> LWORK >= N*NB, where NB is the block size returned *> by ILAENV. *> @@ -229,7 +229,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYcomputational +*> \ingroup hetrf_rk * *> \par Further Details: * ===================== diff --git a/lapack-netlib/SRC/dsytrf_rook.f b/lapack-netlib/SRC/dsytrf_rook.f index 2f00d18024..3166634857 100644 --- a/lapack-netlib/SRC/dsytrf_rook.f +++ b/lapack-netlib/SRC/dsytrf_rook.f @@ -118,7 +118,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >=1. For best performance +*> The length of WORK. LWORK >= 1. For best performance *> LWORK >= N*NB, where NB is the block size returned by ILAENV. *> *> If LWORK = -1, then a workspace query is assumed; the routine @@ -146,7 +146,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYcomputational +*> \ingroup hetrf_rook * *> \par Further Details: * ===================== diff --git a/lapack-netlib/SRC/dsytri2.f b/lapack-netlib/SRC/dsytri2.f index dbcdcdb588..5960d39928 100644 --- a/lapack-netlib/SRC/dsytri2.f +++ b/lapack-netlib/SRC/dsytri2.f @@ -88,16 +88,16 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, dimension (N+NB+1)*(NB+3) +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. -*> WORK is size >= (N+NB+1)*(NB+3) +*> If N = 0, LWORK >= 1, else LWORK >= (N+NB+1)*(NB+3). *> If LWORK = -1, then a workspace query is assumed; the routine -*> calculates: +*> calculates: *> - the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, *> - and no error message related to LWORK is issued by XERBLA. @@ -120,7 +120,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYcomputational +*> \ingroup hetri2 * * ===================================================================== SUBROUTINE DSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) @@ -159,9 +159,13 @@ SUBROUTINE DSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) +* * Get blocksize +* NBMAX = ILAENV( 1, 'DSYTRI2', UPLO, N, -1, -1, -1 ) - IF ( NBMAX .GE. N ) THEN + IF( N.EQ.0 ) THEN + MINSIZE = 1 + ELSE IF( NBMAX.GE.N ) THEN MINSIZE = N ELSE MINSIZE = (N+NBMAX+1)*(NBMAX+3) @@ -173,28 +177,29 @@ SUBROUTINE DSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF (LWORK .LT. MINSIZE .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.MINSIZE .AND. .NOT.LQUERY ) THEN INFO = -7 END IF -* -* Quick return if possible -* * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSYTRI2', -INFO ) RETURN ELSE IF( LQUERY ) THEN - WORK(1)=MINSIZE + WORK( 1 ) = MINSIZE RETURN END IF +* +* Quick return if possible +* IF( N.EQ.0 ) $ RETURN - IF( NBMAX .GE. N ) THEN + IF( NBMAX.GE.N ) THEN CALL DSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO ) ELSE CALL DSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NBMAX, INFO ) END IF +* RETURN * * End of DSYTRI2 diff --git a/lapack-netlib/SRC/dsytri_3.f b/lapack-netlib/SRC/dsytri_3.f index 86d69cdfdd..50834c605e 100644 --- a/lapack-netlib/SRC/dsytri_3.f +++ b/lapack-netlib/SRC/dsytri_3.f @@ -119,16 +119,17 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is DOUBLE PRECISION array, dimension (N+NB+1)*(NB+3). +*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)). *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >= (N+NB+1)*(NB+3). +*> The length of WORK. +*> If N = 0, LWORK >= 1, else LWORK >= (N+NB+1)*(NB+3). *> -*> If LDWORK = -1, then a workspace query is assumed; +*> If LWORK = -1, then a workspace query is assumed; *> the routine only calculates the optimal size of the optimal *> size of the WORK array, returns this value as the first *> entry of the WORK array, and no error message related to @@ -152,7 +153,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYcomputational +*> \ingroup hetri_3 * *> \par Contributors: * ================== @@ -208,8 +209,13 @@ SUBROUTINE DSYTRI_3( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, * * Determine the block size * - NB = MAX( 1, ILAENV( 1, 'DSYTRI_3', UPLO, N, -1, -1, -1 ) ) - LWKOPT = ( N+NB+1 ) * ( NB+3 ) + IF( N.EQ.0 ) THEN + LWKOPT = 1 + ELSE + NB = MAX( 1, ILAENV( 1, 'DSYTRI_3', UPLO, N, -1, -1, -1 ) ) + LWKOPT = ( N+NB+1 ) * ( NB+3 ) + END IF + WORK( 1 ) = LWKOPT * IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 @@ -217,7 +223,7 @@ SUBROUTINE DSYTRI_3( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF ( LWORK .LT. LWKOPT .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKOPT .AND. .NOT.LQUERY ) THEN INFO = -8 END IF * @@ -225,7 +231,6 @@ SUBROUTINE DSYTRI_3( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, CALL XERBLA( 'DSYTRI_3', -INFO ) RETURN ELSE IF( LQUERY ) THEN - WORK( 1 ) = LWKOPT RETURN END IF * diff --git a/lapack-netlib/SRC/dsytrs_aa.f b/lapack-netlib/SRC/dsytrs_aa.f index 26b11a2a0b..f0016cb7f7 100644 --- a/lapack-netlib/SRC/dsytrs_aa.f +++ b/lapack-netlib/SRC/dsytrs_aa.f @@ -105,7 +105,13 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,3*N-2). +*> The dimension of the array WORK. +*> If MIN(N,NRHS) = 0, LWORK >= 1, else LWORK >= 3*N-2. +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the minimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO @@ -123,7 +129,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleSYcomputational +*> \ingroup hetrs_aa * * ===================================================================== SUBROUTINE DSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, @@ -151,7 +157,7 @@ SUBROUTINE DSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, * .. * .. Local Scalars .. LOGICAL LQUERY, UPPER - INTEGER K, KP, LWKOPT + INTEGER K, KP, LWKMIN * .. * .. External Functions .. LOGICAL LSAME @@ -161,13 +167,19 @@ SUBROUTINE DSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, EXTERNAL DLACPY, DGTSV, DSWAP, DTRSM, XERBLA * .. * .. Intrinsic Functions .. - INTRINSIC MAX + INTRINSIC MIN, MAX * .. * .. Executable Statements .. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) + IF( MIN( N, NRHS ).EQ.0 ) THEN + LWKMIN = 1 + ELSE + LWKMIN = 3*N-2 + END IF +* IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN @@ -178,21 +190,20 @@ SUBROUTINE DSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 - ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -10 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSYTRS_AA', -INFO ) RETURN ELSE IF( LQUERY ) THEN - LWKOPT = (3*N-2) - WORK( 1 ) = LWKOPT + WORK( 1 ) = LWKMIN RETURN END IF * * Quick return if possible * - IF( N.EQ.0 .OR. NRHS.EQ.0 ) + IF( MIN( N, NRHS ).EQ.0 ) $ RETURN * IF( UPPER ) THEN diff --git a/lapack-netlib/SRC/sgebrd.f b/lapack-netlib/SRC/sgebrd.f index 2d0c6d6511..b33ad0b1f7 100644 --- a/lapack-netlib/SRC/sgebrd.f +++ b/lapack-netlib/SRC/sgebrd.f @@ -122,7 +122,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of the array WORK. LWORK >= max(1,M,N). +*> The length of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MAX(M,N), otherwise. *> For optimum performance LWORK >= (M+N)*NB, where NB *> is the optimal blocksize. *> @@ -223,8 +224,8 @@ SUBROUTINE SGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * .. * .. Local Scalars .. LOGICAL LQUERY - INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB, - $ NBMIN, NX, WS + INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKMIN, LWKOPT, + $ MINMN, NB, NBMIN, NX, WS * .. * .. External Subroutines .. EXTERNAL SGEBD2, SGEMM, SLABRD, XERBLA @@ -242,9 +243,16 @@ SUBROUTINE SGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * Test the input parameters * INFO = 0 - NB = MAX( 1, ILAENV( 1, 'SGEBRD', ' ', M, N, -1, -1 ) ) - LWKOPT = ( M+N )*NB - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWKMIN = 1 + LWKOPT = 1 + ELSE + LWKMIN = MAX( M, N ) + NB = MAX( 1, ILAENV( 1, 'SGEBRD', ' ', M, N, -1, -1 ) ) + LWKOPT = ( M+N )*NB + ENDIF + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 @@ -252,7 +260,7 @@ SUBROUTINE SGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -10 END IF IF( INFO.LT.0 ) THEN @@ -264,7 +272,6 @@ SUBROUTINE SGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * * Quick return if possible * - MINMN = MIN( M, N ) IF( MINMN.EQ.0 ) THEN WORK( 1 ) = 1 RETURN @@ -283,7 +290,7 @@ SUBROUTINE SGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * Determine when to switch from blocked to unblocked code. * IF( NX.LT.MINMN ) THEN - WS = ( M+N )*NB + WS = LWKOPT IF( LWORK.LT.WS ) THEN * * Not enough work space for the optimal NB, consider using @@ -342,7 +349,8 @@ SUBROUTINE SGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * CALL SGEBD2( M-I+1, N-I+1, A( I, I ), LDA, D( I ), E( I ), $ TAUQ( I ), TAUP( I ), WORK, IINFO ) - WORK( 1 ) = SROUNDUP_LWORK(WS) +* + WORK( 1 ) = SROUNDUP_LWORK( WS ) RETURN * * End of SGEBRD diff --git a/lapack-netlib/SRC/sgehrd.f b/lapack-netlib/SRC/sgehrd.f index 47733d947e..cfa17e156f 100644 --- a/lapack-netlib/SRC/sgehrd.f +++ b/lapack-netlib/SRC/sgehrd.f @@ -89,7 +89,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL array, dimension (LWORK) +*> WORK is REAL array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> @@ -173,7 +173,7 @@ SUBROUTINE SGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) INTEGER IHI, ILO, INFO, LDA, LWORK, N * .. * .. Array Arguments .. - REAL A( LDA, * ), TAU( * ), WORK( * ) + REAL A( LDA, * ), TAU( * ), WORK( * ) * .. * * ===================================================================== @@ -182,7 +182,7 @@ SUBROUTINE SGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) INTEGER NBMAX, LDT, TSIZE PARAMETER ( NBMAX = 64, LDT = NBMAX+1, $ TSIZE = LDT*NBMAX ) - REAL ZERO, ONE + REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, $ ONE = 1.0E+0 ) * .. @@ -190,7 +190,7 @@ SUBROUTINE SGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) LOGICAL LQUERY INTEGER I, IB, IINFO, IWT, J, LDWORK, LWKOPT, NB, $ NBMIN, NH, NX - REAL EI + REAL EI * .. * .. External Subroutines .. EXTERNAL SAXPY, SGEHD2, SGEMM, SLAHR2, SLARFB, STRMM, @@ -222,13 +222,19 @@ SUBROUTINE SGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) INFO = -8 END IF * + NH = IHI - ILO + 1 IF( INFO.EQ.0 ) THEN * * Compute the workspace requirements * - NB = MIN( NBMAX, ILAENV( 1, 'SGEHRD', ' ', N, ILO, IHI, -1 ) ) - LWKOPT = N*NB + TSIZE - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + IF( NH.LE.1 ) THEN + LWKOPT = 1 + ELSE + NB = MIN( NBMAX, ILAENV( 1, 'SGEHRD', ' ', N, ILO, IHI, + $ -1 ) ) + LWKOPT = N*NB + TSIZE + ENDIF + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -249,7 +255,6 @@ SUBROUTINE SGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) * * Quick return if possible * - NH = IHI - ILO + 1 IF( NH.LE.1 ) THEN WORK( 1 ) = 1 RETURN @@ -269,7 +274,7 @@ SUBROUTINE SGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) * * Determine if workspace is large enough for blocked code * - IF( LWORK.LT.N*NB+TSIZE ) THEN + IF( LWORK.LT.LWKOPT ) THEN * * Not enough workspace to use optimal NB: determine the * minimum value of NB, and reduce NB or force use of @@ -345,7 +350,8 @@ SUBROUTINE SGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) * Use unblocked code to reduce the rest of the matrix * CALL SGEHD2( N, I, IHI, A, LDA, TAU, WORK, IINFO ) - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) +* + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/sgelq.f b/lapack-netlib/SRC/sgelq.f index 74c7cc267a..75f02675d8 100644 --- a/lapack-netlib/SRC/sgelq.f +++ b/lapack-netlib/SRC/sgelq.f @@ -98,7 +98,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1 or -2, then a workspace query is assumed. The routine *> only calculates the sizes of the T and WORK arrays, returns these *> values as the first entries of the T and WORK arrays, and no error @@ -295,9 +295,9 @@ SUBROUTINE SGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, T( 2 ) = MB T( 3 ) = NB IF( MINW ) THEN - WORK( 1 ) = SROUNDUP_LWORK(LWMIN) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) ELSE - WORK( 1 ) = SROUNDUP_LWORK(LWREQ) + WORK( 1 ) = SROUNDUP_LWORK( LWREQ ) END IF END IF IF( INFO.NE.0 ) THEN @@ -322,7 +322,7 @@ SUBROUTINE SGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ LWORK, INFO ) END IF * - WORK( 1 ) = SROUNDUP_LWORK(LWREQ) + WORK( 1 ) = SROUNDUP_LWORK( LWREQ ) RETURN * * End of SGELQ diff --git a/lapack-netlib/SRC/sgelqf.f b/lapack-netlib/SRC/sgelqf.f index 1ceec4742d..3b3913d843 100644 --- a/lapack-netlib/SRC/sgelqf.f +++ b/lapack-netlib/SRC/sgelqf.f @@ -93,7 +93,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,M). +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M, otherwise. *> For optimum performance LWORK >= M*NB, where NB is the *> optimal blocksize. *> @@ -175,9 +176,8 @@ SUBROUTINE SGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * Test the input arguments * INFO = 0 + K = MIN( M, N ) NB = ILAENV( 1, 'SGELQF', ' ', M, N, -1, -1 ) - LWKOPT = M*NB - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 @@ -185,19 +185,25 @@ SUBROUTINE SGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN - INFO = -7 + ELSE IF( .NOT.LQUERY ) THEN + IF( LWORK.LE.0 .OR. ( N.GT.0 .AND. LWORK.LT.MAX( 1, M ) ) ) + $ INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGELQF', -INFO ) RETURN ELSE IF( LQUERY ) THEN + IF( K.EQ.0 ) THEN + LWKOPT = 1 + ELSE + LWKOPT = M*NB + END IF + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN END IF * * Quick return if possible * - K = MIN( M, N ) IF( K.EQ.0 ) THEN WORK( 1 ) = 1 RETURN @@ -267,7 +273,7 @@ SUBROUTINE SGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) $ CALL SGELQ2( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK, $ IINFO ) * - WORK( 1 ) = SROUNDUP_LWORK(IWS) + WORK( 1 ) = SROUNDUP_LWORK( IWS ) RETURN * * End of SGELQF diff --git a/lapack-netlib/SRC/sgemlq.f b/lapack-netlib/SRC/sgemlq.f index 83536825cc..7e4d9bf656 100644 --- a/lapack-netlib/SRC/sgemlq.f +++ b/lapack-netlib/SRC/sgemlq.f @@ -110,13 +110,14 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) REAL array, dimension (MAX(1,LWORK)) +*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1, then a workspace query is assumed. The routine *> only calculates the size of the WORK array, returns this *> value as WORK(1), and no error message related to WORK @@ -187,7 +188,7 @@ SUBROUTINE SGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * .. * .. Local Scalars .. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER MB, NB, LW, NBLCKS, MN + INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME @@ -207,7 +208,7 @@ SUBROUTINE SGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Test the input arguments * - LQUERY = LWORK.EQ.-1 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'T' ) LEFT = LSAME( SIDE, 'L' ) @@ -222,6 +223,13 @@ SUBROUTINE SGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, LW = M * MB MN = N END IF +* + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF * IF( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN IF( MOD( MN - K, NB - K ) .EQ. 0 ) THEN @@ -250,12 +258,12 @@ SUBROUTINE SGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, INFO = -9 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 - ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN INFO = -13 END IF * IF( INFO.EQ.0 ) THEN - WORK( 1 ) = SROUNDUP_LWORK( LW ) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) END IF * IF( INFO.NE.0 ) THEN @@ -267,7 +275,7 @@ SUBROUTINE SGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Quick return if possible * - IF( MIN( M, N, K ).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF * @@ -280,7 +288,7 @@ SUBROUTINE SGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, $ MB, C, LDC, WORK, LWORK, INFO ) END IF * - WORK( 1 ) = SROUNDUP_LWORK( LW ) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) * RETURN * diff --git a/lapack-netlib/SRC/sgemqr.f b/lapack-netlib/SRC/sgemqr.f index 3207f8bfd0..19bf467b8b 100644 --- a/lapack-netlib/SRC/sgemqr.f +++ b/lapack-netlib/SRC/sgemqr.f @@ -189,12 +189,13 @@ SUBROUTINE SGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * .. * .. Local Scalars .. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER MB, NB, LW, NBLCKS, MN + INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME + EXTERNAL LSAME REAL SROUNDUP_LWORK - EXTERNAL LSAME, SROUNDUP_LWORK + EXTERNAL SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL SGEMQRT, SLAMTSQR, XERBLA @@ -206,7 +207,7 @@ SUBROUTINE SGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Test the input arguments * - LQUERY = LWORK.EQ.-1 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'T' ) LEFT = LSAME( SIDE, 'L' ) @@ -221,6 +222,13 @@ SUBROUTINE SGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, LW = MB * NB MN = N END IF +* + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF * IF( ( MB.GT.K ) .AND. ( MN.GT.K ) ) THEN IF( MOD( MN - K, MB - K ).EQ.0 ) THEN @@ -249,12 +257,12 @@ SUBROUTINE SGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, INFO = -9 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 - ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN INFO = -13 END IF * IF( INFO.EQ.0 ) THEN - WORK( 1 ) = SROUNDUP_LWORK(LW) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) END IF * IF( INFO.NE.0 ) THEN @@ -266,7 +274,7 @@ SUBROUTINE SGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Quick return if possible * - IF( MIN( M, N, K ).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF * @@ -279,7 +287,7 @@ SUBROUTINE SGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, $ NB, C, LDC, WORK, LWORK, INFO ) END IF * - WORK( 1 ) = SROUNDUP_LWORK(LW) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) * RETURN * diff --git a/lapack-netlib/SRC/sgeqlf.f b/lapack-netlib/SRC/sgeqlf.f index b1266c89eb..14942b7652 100644 --- a/lapack-netlib/SRC/sgeqlf.f +++ b/lapack-netlib/SRC/sgeqlf.f @@ -88,7 +88,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,N). +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= N, otherwise. *> For optimum performance LWORK >= N*NB, where NB is the *> optimal blocksize. *> @@ -189,8 +190,9 @@ SUBROUTINE SGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) END IF WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) * - IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN - INFO = -7 + IF( .NOT.LQUERY ) THEN + IF( LWORK.LE.0 .OR. ( M.GT.0 .AND. LWORK.LT.MAX( 1, N ) ) ) + $ INFO = -7 END IF END IF * diff --git a/lapack-netlib/SRC/sgeqp3rk.f b/lapack-netlib/SRC/sgeqp3rk.f index bb5da72dc2..d3a335b88e 100644 --- a/lapack-netlib/SRC/sgeqp3rk.f +++ b/lapack-netlib/SRC/sgeqp3rk.f @@ -427,7 +427,8 @@ *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. -*. LWORK >= (3*N + NRHS - 1) +*> LWORK >= 1, if MIN(M,N) = 0, and +*> LWORK >= (3*N+NRHS-1), otherwise. *> For optimal performance LWORK >= (2*N + NB*( N+NRHS+1 )), *> where NB is the optimal block size for SGEQP3RK returned *> by ILAENV. Minimal block size MINNB=2. @@ -618,8 +619,9 @@ SUBROUTINE SGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, * .. External Functions .. LOGICAL SISNAN INTEGER ISAMAX, ILAENV - REAL SLAMCH, SNRM2 - EXTERNAL SISNAN, SLAMCH, SNRM2, ISAMAX, ILAENV + REAL SLAMCH, SNRM2, SROUNDUP_LWORK + EXTERNAL SISNAN, SLAMCH, SNRM2, ISAMAX, ILAENV, + $ SROUNDUP_LWORK * .. * .. Intrinsic Functions .. INTRINSIC REAL, MAX, MIN @@ -696,7 +698,7 @@ SUBROUTINE SGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, * LWKOPT = 2*N + NB*( N+NRHS+1 ) END IF - WORK( 1 ) = REAL( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * IF( ( LWORK.LT.IWS ) .AND. .NOT.LQUERY ) THEN INFO = -15 @@ -719,7 +721,7 @@ SUBROUTINE SGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, K = 0 MAXC2NRMK = ZERO RELMAXC2NRMK = ZERO - WORK( 1 ) = REAL( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN END IF * @@ -772,7 +774,7 @@ SUBROUTINE SGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, * * Array TAU is not set and contains undefined elements. * - WORK( 1 ) = REAL( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN END IF * @@ -791,7 +793,7 @@ SUBROUTINE SGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, TAU( J ) = ZERO END DO * - WORK( 1 ) = REAL( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN * END IF @@ -822,7 +824,7 @@ SUBROUTINE SGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, DO J = 1, MINMN TAU( J ) = ZERO END DO - WORK( 1 ) = REAL( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN END IF * @@ -867,7 +869,7 @@ SUBROUTINE SGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, TAU( J ) = ZERO END DO * - WORK( 1 ) = REAL( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN END IF * @@ -985,7 +987,7 @@ SUBROUTINE SGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, * * Return from the routine. * - WORK( 1 ) = REAL( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * @@ -1072,7 +1074,7 @@ SUBROUTINE SGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA, * END IF * - WORK( 1 ) = REAL( LWKOPT ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/sgeqr.f b/lapack-netlib/SRC/sgeqr.f index 6f41a92ead..79a515e1c8 100644 --- a/lapack-netlib/SRC/sgeqr.f +++ b/lapack-netlib/SRC/sgeqr.f @@ -99,7 +99,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1 or -2, then a workspace query is assumed. The routine *> only calculates the sizes of the T and WORK arrays, returns these *> values as the first entries of the T and WORK arrays, and no error @@ -168,6 +168,8 @@ *> *> \endverbatim *> +*> \ingroup geqr +*> * ===================================================================== SUBROUTINE SGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ INFO ) @@ -188,11 +190,13 @@ SUBROUTINE SGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, * .. * .. Local Scalars .. LOGICAL LQUERY, LMINWS, MINT, MINW - INTEGER MB, NB, MINTSZ, NBLCKS + INTEGER MB, NB, MINTSZ, NBLCKS, LWMIN, LWREQ * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME + REAL SROUNDUP_LWORK + EXTERNAL SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL SLATSQR, SGEQRT, XERBLA @@ -244,8 +248,10 @@ SUBROUTINE SGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, * * Determine if the workspace size satisfies minimal size * + LWMIN = MAX( 1, N ) + LWREQ = MAX( 1, N*NB ) LMINWS = .FALSE. - IF( ( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) .OR. LWORK.LT.NB*N ) + IF( ( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) .OR. LWORK.LT.LWREQ ) $ .AND. ( LWORK.GE.N ) .AND. ( TSIZE.GE.MINTSZ ) $ .AND. ( .NOT.LQUERY ) ) THEN IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) ) THEN @@ -253,7 +259,7 @@ SUBROUTINE SGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, NB = 1 MB = M END IF - IF( LWORK.LT.NB*N ) THEN + IF( LWORK.LT.LWREQ ) THEN LMINWS = .TRUE. NB = 1 END IF @@ -268,7 +274,7 @@ SUBROUTINE SGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, ELSE IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) $ .AND. ( .NOT.LQUERY ) .AND. ( .NOT.LMINWS ) ) THEN INFO = -6 - ELSE IF( ( LWORK.LT.MAX( 1, N*NB ) ) .AND. ( .NOT.LQUERY ) + ELSE IF( ( LWORK.LT.LWREQ ) .AND. ( .NOT.LQUERY ) $ .AND. ( .NOT.LMINWS ) ) THEN INFO = -8 END IF @@ -282,9 +288,9 @@ SUBROUTINE SGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, T( 2 ) = MB T( 3 ) = NB IF( MINW ) THEN - WORK( 1 ) = MAX( 1, N ) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) ELSE - WORK( 1 ) = MAX( 1, NB*N ) + WORK( 1 ) = SROUNDUP_LWORK( LWREQ ) END IF END IF IF( INFO.NE.0 ) THEN @@ -309,7 +315,7 @@ SUBROUTINE SGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ LWORK, INFO ) END IF * - WORK( 1 ) = MAX( 1, NB*N ) + WORK( 1 ) = SROUNDUP_LWORK( LWREQ ) * RETURN * diff --git a/lapack-netlib/SRC/sgeqrfp.f b/lapack-netlib/SRC/sgeqrfp.f index d1ee2a8283..37747c5124 100644 --- a/lapack-netlib/SRC/sgeqrfp.f +++ b/lapack-netlib/SRC/sgeqrfp.f @@ -97,7 +97,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,N). +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= N, otherwise. *> For optimum performance LWORK >= N*NB, where NB is *> the optimal blocksize. *> @@ -162,8 +163,8 @@ SUBROUTINE SGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * * .. Local Scalars .. LOGICAL LQUERY - INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB, - $ NBMIN, NX + INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKMIN, LWKOPT, + $ NB, NBMIN, NX * .. * .. External Subroutines .. EXTERNAL SGEQR2P, SLARFB, SLARFT, XERBLA @@ -173,8 +174,9 @@ SUBROUTINE SGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * .. * .. External Functions .. INTEGER ILAENV + EXTERNAL ILAENV REAL SROUNDUP_LWORK - EXTERNAL ILAENV, SROUNDUP_LWORK + EXTERNAL SROUNDUP_LWORK * .. * .. Executable Statements .. * @@ -182,8 +184,16 @@ SUBROUTINE SGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * INFO = 0 NB = ILAENV( 1, 'SGEQRF', ' ', M, N, -1, -1 ) - LWKOPT = N*NB - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + K = MIN( M, N ) + IF( K.EQ.0 ) THEN + LWKMIN = 1 + LWKOPT = 1 + ELSE + LWKMIN = N + LWKOPT = N*NB + END IF + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) +* LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 @@ -191,7 +201,7 @@ SUBROUTINE SGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN @@ -211,7 +221,7 @@ SUBROUTINE SGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * NBMIN = 2 NX = 0 - IWS = N + IWS = LWKMIN IF( NB.GT.1 .AND. NB.LT.K ) THEN * * Determine when to cross over from blocked to unblocked code. @@ -273,7 +283,7 @@ SUBROUTINE SGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) $ CALL SGEQR2P( M-I+1, N-I+1, A( I, I ), LDA, TAU( I ), WORK, $ IINFO ) * - WORK( 1 ) = SROUNDUP_LWORK(IWS) + WORK( 1 ) = SROUNDUP_LWORK( IWS ) RETURN * * End of SGEQRFP diff --git a/lapack-netlib/SRC/sgesvj.f b/lapack-netlib/SRC/sgesvj.f index 3f53a5a152..36aed2853c 100644 --- a/lapack-netlib/SRC/sgesvj.f +++ b/lapack-netlib/SRC/sgesvj.f @@ -208,7 +208,7 @@ *> *> \param[in,out] WORK *> \verbatim -*> WORK is REAL array, dimension (LWORK) +*> WORK is REAL array, dimension (MAX(1,LWORK)) *> On entry, *> If JOBU = 'C' : *> WORK(1) = CTOL, where CTOL defines the threshold for convergence. @@ -239,7 +239,12 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> length of WORK, WORK >= MAX(6,M+N) +*> Length of WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MAX(6,M+N), otherwise. +*> +*> If on entry LWORK = -1, then a workspace query is assumed and +*> no computation is done; WORK(1) is set to the minial (and optimal) +*> length of WORK. *> \endverbatim *> *> \param[out] INFO @@ -260,7 +265,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup realGEcomputational +*> \ingroup gesvj * *> \par Further Details: * ===================== @@ -351,9 +356,9 @@ SUBROUTINE SGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1, $ ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, N2, N34, $ N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP, - $ SWBAND - LOGICAL APPLV, GOSCALE, LOWER, LSVEC, NOSCALE, ROTOK, - $ RSVEC, UCTOL, UPPER + $ SWBAND, MINMN, LWMIN + LOGICAL APPLV, GOSCALE, LOWER, LQUERY, LSVEC, NOSCALE, + $ ROTOK, RSVEC, UCTOL, UPPER * .. * .. Local Arrays .. REAL FASTR( 5 ) @@ -369,8 +374,8 @@ SUBROUTINE SGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, INTEGER ISAMAX EXTERNAL ISAMAX * from LAPACK - REAL SLAMCH - EXTERNAL SLAMCH + REAL SLAMCH, SROUNDUP_LWORK + EXTERNAL SLAMCH, SROUNDUP_LWORK LOGICAL LSAME EXTERNAL LSAME * .. @@ -394,6 +399,14 @@ SUBROUTINE SGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, UPPER = LSAME( JOBA, 'U' ) LOWER = LSAME( JOBA, 'L' ) * + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 6, M+N ) + END IF +* + LQUERY = ( LWORK.EQ.-1 ) IF( .NOT.( UPPER .OR. LOWER .OR. LSAME( JOBA, 'G' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( LSVEC .OR. UCTOL .OR. LSAME( JOBU, 'N' ) ) ) THEN @@ -413,7 +426,7 @@ SUBROUTINE SGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, INFO = -11 ELSE IF( UCTOL .AND. ( WORK( 1 ).LE.ONE ) ) THEN INFO = -12 - ELSE IF( LWORK.LT.MAX( M+N, 6 ) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. ( .NOT.LQUERY ) ) THEN INFO = -13 ELSE INFO = 0 @@ -423,11 +436,14 @@ SUBROUTINE SGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGESVJ', -INFO ) RETURN + ELSE IF( LQUERY ) THEN + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) + RETURN END IF * * #:) Quick return for void matrix * - IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )RETURN + IF( MINMN.EQ.0 ) RETURN * * Set numerical parameters * The stopping criterion for Jacobi rotations is diff --git a/lapack-netlib/SRC/sgetri.f b/lapack-netlib/SRC/sgetri.f index fe71bc4a52..7b06bb63db 100644 --- a/lapack-netlib/SRC/sgetri.f +++ b/lapack-netlib/SRC/sgetri.f @@ -137,8 +137,9 @@ SUBROUTINE SGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO ) * .. * .. External Functions .. INTEGER ILAENV + EXTERNAL ILAENV REAL SROUNDUP_LWORK - EXTERNAL ILAENV, SROUNDUP_LWORK + EXTERNAL SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL SGEMM, SGEMV, SSWAP, STRSM, STRTRI, XERBLA @@ -152,8 +153,9 @@ SUBROUTINE SGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO ) * INFO = 0 NB = ILAENV( 1, 'SGETRI', ' ', N, -1, -1, -1 ) - LWKOPT = N*NB - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + LWKOPT = MAX( 1, N*NB ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) +* LQUERY = ( LWORK.EQ.-1 ) IF( N.LT.0 ) THEN INFO = -1 @@ -251,7 +253,7 @@ SUBROUTINE SGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO ) $ CALL SSWAP( N, A( 1, J ), 1, A( 1, JP ), 1 ) 60 CONTINUE * - WORK( 1 ) = SROUNDUP_LWORK(IWS) + WORK( 1 ) = SROUNDUP_LWORK( IWS ) RETURN * * End of SGETRI diff --git a/lapack-netlib/SRC/sgetsls.f b/lapack-netlib/SRC/sgetsls.f index d89c6a4e6d..08a427a8b3 100644 --- a/lapack-netlib/SRC/sgetsls.f +++ b/lapack-netlib/SRC/sgetsls.f @@ -127,7 +127,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1 or -2, then a workspace query is assumed. *> If LWORK = -1, the routine calculates optimal size of WORK for the *> optimal performance and returns this value in WORK(1). @@ -226,7 +226,10 @@ SUBROUTINE SGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB, * * Determine the optimum and minimum LWORK * - IF( M.GE.N ) THEN + IF( MIN( M, N, NRHS ).EQ.0 ) THEN + WSIZEO = 1 + WSIZEM = 1 + ELSE IF( M.GE.N ) THEN CALL SGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 ) TSZO = INT( TQ( 1 ) ) LWO = INT( WORKQ( 1 ) ) diff --git a/lapack-netlib/SRC/sgetsqrhrt.f b/lapack-netlib/SRC/sgetsqrhrt.f index d80ff4da81..7ade8a66c1 100644 --- a/lapack-netlib/SRC/sgetsqrhrt.f +++ b/lapack-netlib/SRC/sgetsqrhrt.f @@ -130,14 +130,17 @@ *> *> \param[in] LWORK *> \verbatim +*> LWORK is INTEGER *> The dimension of the array WORK. -*> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), +*> If MIN(M,N) = 0, LWORK >= 1, else +*> LWORK >= MAX( 1, LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), *> where *> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)), *> NB1LOCAL = MIN(NB1,N). *> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL, *> LW1 = NB1LOCAL * N, -*> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ), +*> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ). +*> *> If LWORK = -1, then a workspace query is assumed. *> The routine only calculates the optimal size of the WORK *> array, returns this value as the first entry of the WORK @@ -216,7 +219,7 @@ SUBROUTINE SGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, * Test the input arguments * INFO = 0 - LQUERY = LWORK.EQ.-1 + LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 .OR. M.LT.N ) THEN @@ -229,7 +232,7 @@ SUBROUTINE SGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, INFO = -5 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -7 - ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN + ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN INFO = -9 ELSE * @@ -267,8 +270,9 @@ SUBROUTINE SGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ) * LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ) + LWORKOPT = MAX( 1, LWORKOPT ) * - IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN + IF( LWORK.LT.LWORKOPT .AND. .NOT.LQUERY ) THEN INFO = -11 END IF * @@ -350,4 +354,4 @@ SUBROUTINE SGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, * * End of SGETSQRHRT * - END \ No newline at end of file + END diff --git a/lapack-netlib/SRC/sgges3.f b/lapack-netlib/SRC/sgges3.f index e35d4955a5..e90cd6947e 100644 --- a/lapack-netlib/SRC/sgges3.f +++ b/lapack-netlib/SRC/sgges3.f @@ -234,6 +234,8 @@ *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. +*> If N = 0, LWORK >= 1, else LWORK >= 6*N+16. +*> For good performance, LWORK must generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -309,7 +311,8 @@ SUBROUTINE SGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL, $ LQUERY, LST2SL, WANTST INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, - $ ILO, IP, IRIGHT, IROWS, ITAU, IWRK, LWKOPT + $ ILO, IP, IRIGHT, IROWS, ITAU, IWRK, LWKOPT, + $ LWKMIN REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL, $ PVSR, SAFMAX, SAFMIN, SMLNUM * .. @@ -361,6 +364,12 @@ SUBROUTINE SGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) + IF( N.EQ.0 ) THEN + LWKMIN = 1 + ELSE + LWKMIN = 6*N+16 + END IF +* IF( IJOBVL.LE.0 ) THEN INFO = -1 ELSE IF( IJOBVR.LE.0 ) THEN @@ -377,7 +386,7 @@ SUBROUTINE SGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, INFO = -15 ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN INFO = -17 - ELSE IF( LWORK.LT.6*N+16 .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -19 END IF * @@ -385,7 +394,7 @@ SUBROUTINE SGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, * IF( INFO.EQ.0 ) THEN CALL SGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR ) - LWKOPT = MAX( 6*N+16, 3*N+INT( WORK( 1 ) ) ) + LWKOPT = MAX( LWKMIN, 3*N+INT( WORK( 1 ) ) ) CALL SORMQR( 'L', 'T', N, N, N, B, LDB, WORK, A, LDA, WORK, $ -1, IERR ) LWKOPT = MAX( LWKOPT, 3*N+INT( WORK( 1 ) ) ) @@ -407,7 +416,11 @@ SUBROUTINE SGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, $ IERR ) LWKOPT = MAX( LWKOPT, 2*N+INT( WORK( 1 ) ) ) END IF - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + IF( N.EQ.0 ) THEN + WORK( 1 ) = 1 + ELSE + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) + END IF END IF * IF( INFO.NE.0 ) THEN @@ -421,6 +434,7 @@ SUBROUTINE SGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, * IF( N.EQ.0 ) THEN SDIM = 0 + WORK( 1 ) = 1 RETURN END IF * @@ -657,7 +671,7 @@ SUBROUTINE SGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, * 40 CONTINUE * - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/sggev3.f b/lapack-netlib/SRC/sggev3.f index c82d2187f5..d788d11472 100644 --- a/lapack-netlib/SRC/sggev3.f +++ b/lapack-netlib/SRC/sggev3.f @@ -189,6 +189,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER +*> The dimension of the array WORK. LWORK >= MAX(1,8*N). +*> For good performance, LWORK should generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -248,7 +250,8 @@ SUBROUTINE SGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY CHARACTER CHTEMP INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO, - $ IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, LWKOPT + $ IN, IRIGHT, IROWS, ITAU, IWRK, JC, JR, LWKOPT, + $ LWKMIN REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, $ SMLNUM, TEMP * .. @@ -298,6 +301,7 @@ SUBROUTINE SGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) + LWKMIN = MAX( 1, 8*N ) IF( IJOBVL.LE.0 ) THEN INFO = -1 ELSE IF( IJOBVR.LE.0 ) THEN @@ -312,7 +316,7 @@ SUBROUTINE SGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, INFO = -12 ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN INFO = -14 - ELSE IF( LWORK.LT.MAX( 1, 8*N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -16 END IF * @@ -320,28 +324,31 @@ SUBROUTINE SGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHAR, * IF( INFO.EQ.0 ) THEN CALL SGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR ) - LWKOPT = MAX( 1, 8*N, 3*N+INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKMIN, 3*N+INT( WORK( 1 ) ) ) CALL SORMQR( 'L', 'T', N, N, N, B, LDB, WORK, A, LDA, WORK, $ -1, IERR ) - LWKOPT = MAX( LWKOPT, 3*N+INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 3*N+INT( WORK( 1 ) ) ) CALL SGGHD3( JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, VL, LDVL, $ VR, LDVR, WORK, -1, IERR ) - LWKOPT = MAX( LWKOPT, 3*N+INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 3*N+INT( WORK( 1 ) ) ) IF( ILVL ) THEN CALL SORGQR( N, N, N, VL, LDVL, WORK, WORK, -1, IERR ) - LWKOPT = MAX( LWKOPT, 3*N+INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 3*N+INT( WORK( 1 ) ) ) CALL SLAQZ0( 'S', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, $ WORK, -1, 0, IERR ) - LWKOPT = MAX( LWKOPT, 2*N+INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 2*N+INT( WORK( 1 ) ) ) ELSE CALL SLAQZ0( 'E', JOBVL, JOBVR, N, 1, N, A, LDA, B, LDB, $ ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, $ WORK, -1, 0, IERR ) - LWKOPT = MAX( LWKOPT, 2*N+INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKOPT, 2*N+INT( WORK( 1 ) ) ) + END IF + IF( N.EQ.0 ) THEN + WORK( 1 ) = 1 + ELSE + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF - WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) -* END IF * IF( INFO.NE.0 ) THEN diff --git a/lapack-netlib/SRC/sgghd3.f b/lapack-netlib/SRC/sgghd3.f index 9c5858b5a5..01e57088ad 100644 --- a/lapack-netlib/SRC/sgghd3.f +++ b/lapack-netlib/SRC/sgghd3.f @@ -179,14 +179,14 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL array, dimension (LWORK) +*> WORK is REAL array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> -*> \param[in] LWORK +*> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of the array WORK. LWORK >= 1. +*> The length of the array WORK. LWORK >= 1. *> For optimum performance LWORK >= 6*N*NB, where NB is the *> optimal blocksize. *> @@ -276,7 +276,12 @@ SUBROUTINE SGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, * INFO = 0 NB = ILAENV( 1, 'SGGHD3', ' ', N, ILO, IHI, -1 ) - LWKOPT = MAX( 6*N*NB, 1 ) + NH = IHI - ILO + 1 + IF( NH.LE.1 ) THEN + LWKOPT = 1 + ELSE + LWKOPT = 6*N*NB + END IF WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) INITQ = LSAME( COMPQ, 'I' ) WANTQ = INITQ .OR. LSAME( COMPQ, 'V' ) @@ -326,7 +331,6 @@ SUBROUTINE SGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, * * Quick return if possible * - NH = IHI - ILO + 1 IF( NH.LE.1 ) THEN WORK( 1 ) = ONE RETURN @@ -886,6 +890,7 @@ SUBROUTINE SGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, IF ( JCOL.LT.IHI ) $ CALL SGGHRD( COMPQ2, COMPZ2, N, JCOL, IHI, A, LDA, B, LDB, Q, $ LDQ, Z, LDZ, IERR ) +* WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN diff --git a/lapack-netlib/SRC/sggqrf.f b/lapack-netlib/SRC/sggqrf.f index ebb42a8998..d32b484100 100644 --- a/lapack-netlib/SRC/sggqrf.f +++ b/lapack-netlib/SRC/sggqrf.f @@ -236,8 +236,9 @@ SUBROUTINE SGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, * .. * .. External Functions .. INTEGER ILAENV + EXTERNAL ILAENV REAL SROUNDUP_LWORK - EXTERNAL ILAENV, SROUNDUP_LWORK + EXTERNAL SROUNDUP_LWORK * .. * .. Intrinsic Functions .. INTRINSIC INT, MAX, MIN @@ -251,8 +252,9 @@ SUBROUTINE SGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, NB2 = ILAENV( 1, 'SGERQF', ' ', N, P, -1, -1 ) NB3 = ILAENV( 1, 'SORMQR', ' ', N, M, P, -1 ) NB = MAX( NB1, NB2, NB3 ) - LWKOPT = MAX( N, M, P )*NB - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + LWKOPT = MAX( 1, MAX( N, M, P )*NB ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) +* LQUERY = ( LWORK.EQ.-1 ) IF( N.LT.0 ) THEN INFO = -1 @@ -289,6 +291,7 @@ SUBROUTINE SGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, * CALL SGERQF( N, P, B, LDB, TAUB, WORK, LWORK, INFO ) LWKOPT = MAX( LOPT, INT( WORK( 1 ) ) ) +* WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN diff --git a/lapack-netlib/SRC/sggrqf.f b/lapack-netlib/SRC/sggrqf.f index 2163f1ef8e..b3842ec2ab 100644 --- a/lapack-netlib/SRC/sggrqf.f +++ b/lapack-netlib/SRC/sggrqf.f @@ -250,7 +250,7 @@ SUBROUTINE SGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, NB2 = ILAENV( 1, 'SGEQRF', ' ', P, N, -1, -1 ) NB3 = ILAENV( 1, 'SORMRQ', ' ', M, N, P, -1 ) NB = MAX( NB1, NB2, NB3 ) - LWKOPT = MAX( N, M, P)*NB + LWKOPT = MAX( 1, MAX( N, M, P )*NB ) WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN diff --git a/lapack-netlib/SRC/sggsvd3.f b/lapack-netlib/SRC/sggsvd3.f index 053fff5de1..cee630593e 100644 --- a/lapack-netlib/SRC/sggsvd3.f +++ b/lapack-netlib/SRC/sggsvd3.f @@ -278,7 +278,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns diff --git a/lapack-netlib/SRC/sggsvp3.f b/lapack-netlib/SRC/sggsvp3.f index a463b9064e..8e90d770cc 100644 --- a/lapack-netlib/SRC/sggsvp3.f +++ b/lapack-netlib/SRC/sggsvp3.f @@ -227,7 +227,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -300,8 +300,9 @@ SUBROUTINE SGGSVP3( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, * .. * .. External Functions .. LOGICAL LSAME + EXTERNAL LSAME REAL SROUNDUP_LWORK - EXTERNAL LSAME, SROUNDUP_LWORK + EXTERNAL SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL SGEQP3, SGEQR2, SGERQ2, SLACPY, SLAPMT, diff --git a/lapack-netlib/SRC/slamswlq.f b/lapack-netlib/SRC/slamswlq.f index d4996b1f20..432afadedf 100644 --- a/lapack-netlib/SRC/slamswlq.f +++ b/lapack-netlib/SRC/slamswlq.f @@ -127,17 +127,20 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) REAL array, dimension (MAX(1,LWORK)) +*> (workspace) REAL array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. -*> If SIDE = 'L', LWORK >= max(1,NB) * MB; -*> if SIDE = 'R', LWORK >= max(1,M) * MB. +*> +*> If MIN(M,N,K) = 0, LWORK >= 1. +*> If SIDE = 'L', LWORK >= max(1,NB*MB). +*> If SIDE = 'R', LWORK >= max(1,M*MB). *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim @@ -189,33 +192,38 @@ *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 *> \endverbatim *> +*> \ingroup lamswlq +*> * ===================================================================== SUBROUTINE SLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, - $ LDT, C, LDC, WORK, LWORK, INFO ) + $ LDT, C, LDC, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. - CHARACTER SIDE, TRANS - INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC + CHARACTER SIDE, TRANS + INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC * .. * .. Array Arguments .. - REAL A( LDA, * ), WORK( * ), C(LDC, * ), - $ T( LDT, * ) + REAL A( LDA, * ), WORK( * ), C( LDC, * ), + $ T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER I, II, KK, LW, CTR + LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY + INTEGER I, II, KK, LW, CTR, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME + REAL SROUNDUP_LWORK + EXTERNAL SROUNDUP_LWORK +* .. * .. External Subroutines .. EXTERNAL STPMLQT, SGEMLQT, XERBLA * .. @@ -223,52 +231,60 @@ SUBROUTINE SLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, * * Test the input arguments * - LQUERY = LWORK.LT.0 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'T' ) LEFT = LSAME( SIDE, 'L' ) RIGHT = LSAME( SIDE, 'R' ) - IF (LEFT) THEN + IF( LEFT ) THEN LW = N * MB ELSE LW = M * MB END IF +* + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF * INFO = 0 IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN - INFO = -1 + INFO = -1 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN - INFO = -2 + INFO = -2 ELSE IF( K.LT.0 ) THEN INFO = -5 ELSE IF( M.LT.K ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 - ELSE IF( K.LT.MB .OR. MB.LT.1) THEN + ELSE IF( K.LT.MB .OR. MB.LT.1 ) THEN INFO = -6 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN INFO = -9 - ELSE IF( LDT.LT.MAX( 1, MB) ) THEN + ELSE IF( LDT.LT.MAX( 1, MB ) ) THEN INFO = -11 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN - INFO = -13 - ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN + INFO = -13 + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -15 END IF * + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) + END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLAMSWLQ', -INFO ) - WORK(1) = LW RETURN - ELSE IF (LQUERY) THEN - WORK(1) = LW + ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * - IF( MIN(M,N,K).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF * @@ -402,7 +418,7 @@ SUBROUTINE SLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, * END IF * - WORK(1) = LW + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN * * End of SLAMSWLQ diff --git a/lapack-netlib/SRC/slamtsqr.f b/lapack-netlib/SRC/slamtsqr.f index 960b794de8..f9b167aea3 100644 --- a/lapack-netlib/SRC/slamtsqr.f +++ b/lapack-netlib/SRC/slamtsqr.f @@ -128,22 +128,24 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) REAL array, dimension (MAX(1,LWORK)) -*> +*> (workspace) REAL array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim +*> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. +*> If MIN(M,N,K) = 0, LWORK >= 1. +*> If SIDE = 'L', LWORK >= max(1,N*NB). +*> If SIDE = 'R', LWORK >= max(1,MB*NB). *> -*> If SIDE = 'L', LWORK >= max(1,N)*NB; -*> if SIDE = 'R', LWORK >= max(1,MB)*NB. *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. -*> *> \endverbatim +*> *> \param[out] INFO *> \verbatim *> INFO is INTEGER @@ -191,33 +193,38 @@ *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 *> \endverbatim *> +*> \ingroup lamtsqr +*> * ===================================================================== SUBROUTINE SLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, - $ LDT, C, LDC, WORK, LWORK, INFO ) + $ LDT, C, LDC, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. - CHARACTER SIDE, TRANS - INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC + CHARACTER SIDE, TRANS + INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC * .. * .. Array Arguments .. - REAL A( LDA, * ), WORK( * ), C(LDC, * ), - $ T( LDT, * ) + REAL A( LDA, * ), WORK( * ), C( LDC, * ), + $ T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER I, II, KK, LW, CTR, Q + LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY + INTEGER I, II, KK, LW, CTR, Q, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME + REAL SROUNDUP_LWORK + EXTERNAL SROUNDUP_LWORK +* .. * .. External Subroutines .. EXTERNAL SGEMQRT, STPMQRT, XERBLA * .. @@ -225,12 +232,13 @@ SUBROUTINE SLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, * * Test the input arguments * - LQUERY = LWORK.LT.0 + INFO = 0 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'T' ) LEFT = LSAME( SIDE, 'L' ) RIGHT = LSAME( SIDE, 'R' ) - IF (LEFT) THEN + IF( LEFT ) THEN LW = N * NB Q = M ELSE @@ -238,11 +246,17 @@ SUBROUTINE SLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, Q = N END IF * - INFO = 0 + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF +* IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN - INFO = -1 + INFO = -1 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN - INFO = -2 + INFO = -2 ELSE IF( M.LT.K ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN @@ -253,38 +267,38 @@ SUBROUTINE SLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, INFO = -7 ELSE IF( LDA.LT.MAX( 1, Q ) ) THEN INFO = -9 - ELSE IF( LDT.LT.MAX( 1, NB) ) THEN + ELSE IF( LDT.LT.MAX( 1, NB ) ) THEN INFO = -11 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN - INFO = -13 - ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN + INFO = -13 + ELSE IF( LWORK.LT.LWMIN. AND. (.NOT.LQUERY) ) THEN INFO = -15 END IF * -* Determine the block size if it is tall skinny or short and wide -* - IF( INFO.EQ.0) THEN - WORK(1) = LW + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLAMTSQR', -INFO ) RETURN - ELSE IF (LQUERY) THEN - RETURN + ELSE IF( LQUERY ) THEN + RETURN END IF * * Quick return if possible * - IF( MIN(M,N,K).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF +* +* Determine the block size if it is tall skinny or short and wide * IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN CALL SGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA, - $ T, LDT, C, LDC, WORK, INFO) + $ T, LDT, C, LDC, WORK, INFO ) RETURN - END IF + END IF * IF(LEFT.AND.NOTRAN) THEN * @@ -410,7 +424,7 @@ SUBROUTINE SLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, * END IF * - WORK(1) = LW + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN * * End of SLAMTSQR diff --git a/lapack-netlib/SRC/slaswlq.f b/lapack-netlib/SRC/slaswlq.f index 685f823a0e..594c646db3 100644 --- a/lapack-netlib/SRC/slaswlq.f +++ b/lapack-netlib/SRC/slaswlq.f @@ -96,22 +96,24 @@ *> The leading dimension of the array T. LDT >= MB. *> \endverbatim *> -*> *> \param[out] WORK *> \verbatim -*> (workspace) REAL array, dimension (MAX(1,LWORK)) -*> +*> (workspace) REAL array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim +*> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= MB * M. +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MB*M, otherwise. +*> *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. -*> *> \endverbatim + *> \param[out] INFO *> \verbatim *> INFO is INTEGER @@ -163,32 +165,35 @@ *> * ===================================================================== SUBROUTINE SLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, - $ INFO) + $ INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- * * .. Scalar Arguments .. - INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT + INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT * .. * .. Array Arguments .. - REAL A( LDA, * ), WORK( * ), T( LDT, *) + REAL A( LDA, * ), WORK( * ), T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LQUERY - INTEGER I, II, KK, CTR + LOGICAL LQUERY + INTEGER I, II, KK, CTR, MINMN, LWMIN * .. * .. EXTERNAL FUNCTIONS .. LOGICAL LSAME + EXTERNAL LSAME REAL SROUNDUP_LWORK - EXTERNAL LSAME, SROUNDUP_LWORK + EXTERNAL SROUNDUP_LWORK +* .. * .. EXTERNAL SUBROUTINES .. EXTERNAL SGELQT, SGEQRT, STPLQT, STPQRT, XERBLA +* .. * .. INTRINSIC FUNCTIONS .. INTRINSIC MAX, MIN, MOD * .. @@ -199,12 +204,19 @@ SUBROUTINE SLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, INFO = 0 * LQUERY = ( LWORK.EQ.-1 ) +* + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = M*MB + END IF * IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 .OR. N.LT.M ) THEN INFO = -2 - ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 )) THEN + ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 ) ) THEN INFO = -3 ELSE IF( NB.LE.0 ) THEN INFO = -4 @@ -212,60 +224,60 @@ SUBROUTINE SLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, INFO = -6 ELSE IF( LDT.LT.MB ) THEN INFO = -8 - ELSE IF( ( LWORK.LT.M*MB) .AND. (.NOT.LQUERY) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -10 END IF - IF( INFO.EQ.0) THEN - WORK(1) = MB*M + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLASWLQ', -INFO ) RETURN - ELSE IF (LQUERY) THEN - RETURN + ELSE IF( LQUERY ) THEN + RETURN END IF * * Quick return if possible * - IF( MIN(M,N).EQ.0 ) THEN - RETURN + IF( MINMN.EQ.0 ) THEN + RETURN END IF * * The LQ Decomposition * - IF((M.GE.N).OR.(NB.LE.M).OR.(NB.GE.N)) THEN - CALL SGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO) + IF( (M.GE.N) .OR. (NB.LE.M) .OR. (NB.GE.N) ) THEN + CALL SGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO ) RETURN - END IF + END IF * - KK = MOD((N-M),(NB-M)) - II=N-KK+1 + KK = MOD((N-M),(NB-M)) + II = N-KK+1 * -* Compute the LQ factorization of the first block A(1:M,1:NB) +* Compute the LQ factorization of the first block A(1:M,1:NB) * - CALL SGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO) - CTR = 1 + CALL SGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO ) + CTR = 1 * - DO I = NB+1, II-NB+M , (NB-M) + DO I = NB+1, II-NB+M, (NB-M) * -* Compute the QR factorization of the current block A(1:M,I:I+NB-M) +* Compute the QR factorization of the current block A(1:M,I:I+NB-M) * - CALL STPLQT( M, NB-M, 0, MB, A(1,1), LDA, A( 1, I ), - $ LDA, T(1, CTR * M + 1), - $ LDT, WORK, INFO ) - CTR = CTR + 1 - END DO + CALL STPLQT( M, NB-M, 0, MB, A(1,1), LDA, A( 1, I ), + $ LDA, T(1, CTR * M + 1), + $ LDT, WORK, INFO ) + CTR = CTR + 1 + END DO * * Compute the QR factorization of the last block A(1:M,II:N) * - IF (II.LE.N) THEN + IF( II.LE.N ) THEN CALL STPLQT( M, KK, 0, MB, A(1,1), LDA, A( 1, II ), - $ LDA, T(1, CTR * M + 1), LDT, - $ WORK, INFO ) - END IF + $ LDA, T(1, CTR * M + 1), LDT, + $ WORK, INFO ) + END IF * - WORK( 1 ) = SROUNDUP_LWORK(M * MB) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN * * End of SLASWLQ diff --git a/lapack-netlib/SRC/slatrs3.f b/lapack-netlib/SRC/slatrs3.f index 8f0c4bf163..17052289ee 100644 --- a/lapack-netlib/SRC/slatrs3.f +++ b/lapack-netlib/SRC/slatrs3.f @@ -151,13 +151,16 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL array, dimension (LWORK). -*> On exit, if INFO = 0, WORK(1) returns the optimal size of -*> WORK. +*> WORK is REAL array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK +*> \verbatim *> LWORK is INTEGER +*> The dimension of the array WORK. +*> +*> If MIN(N,NRHS) = 0, LWORK >= 1, else *> LWORK >= MAX(1, 2*NBA * MAX(NBA, MIN(NRHS, 32)), where *> NBA = (N + NB - 1)/NB and NB is the optimal block size. *> @@ -165,6 +168,7 @@ *> only calculates the optimal dimensions of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. +*> \endverbatim *> *> \param[out] INFO *> \verbatim @@ -181,7 +185,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleOTHERauxiliary +*> \ingroup latrs3 *> \par Further Details: * ===================== * \verbatim @@ -253,7 +257,7 @@ SUBROUTINE SLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, LOGICAL LQUERY, NOTRAN, NOUNIT, UPPER INTEGER AWRK, I, IFIRST, IINC, ILAST, II, I1, I2, J, $ JFIRST, JINC, JLAST, J1, J2, K, KK, K1, K2, - $ LANRM, LDS, LSCALE, NB, NBA, NBX, RHS + $ LANRM, LDS, LSCALE, NB, NBA, NBX, RHS, LWMIN REAL ANRM, BIGNUM, BNRM, RSCAL, SCAL, SCALOC, $ SCAMIN, SMLNUM, TMAX * .. @@ -264,7 +268,8 @@ SUBROUTINE SLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, EXTERNAL ILAENV, LSAME, SLAMCH, SLANGE, SLARMM * .. * .. External Subroutines .. - EXTERNAL SLATRS, SSCAL, XERBLA + REAL SROUNDUP_LWORK + EXTERNAL SLATRS, SSCAL, SROUNDUP_LWORK, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN @@ -292,15 +297,24 @@ SUBROUTINE SLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, * row. WORK( I + KK * LDS ) is the scale factor of the vector * segment associated with the I-th block row and the KK-th vector * in the block column. +* LSCALE = NBA * MAX( NBA, MIN( NRHS, NBRHS ) ) LDS = NBA +* * The second part stores upper bounds of the triangular A. There are * a total of NBA x NBA blocks, of which only the upper triangular * part or the lower triangular part is referenced. The upper bound of * the block A( I, J ) is stored as WORK( AWRK + I + J * NBA ). +* LANRM = NBA * NBA AWRK = LSCALE - WORK( 1 ) = LSCALE + LANRM +* + IF( MIN( N, NRHS ).EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = LSCALE + LANRM + END IF + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) * * Test the input parameters. * @@ -322,7 +336,7 @@ SUBROUTINE SLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, INFO = -8 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -10 - ELSE IF( .NOT.LQUERY .AND. LWORK.LT.WORK( 1 ) ) THEN + ELSE IF( .NOT.LQUERY .AND. LWORK.LT.LWMIN ) THEN INFO = -14 END IF IF( INFO.NE.0 ) THEN @@ -650,6 +664,8 @@ SUBROUTINE SLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, END DO END DO RETURN +* + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) * * End of SLATRS3 * diff --git a/lapack-netlib/SRC/slatsqr.f b/lapack-netlib/SRC/slatsqr.f index 86733bb159..4730815b5f 100644 --- a/lapack-netlib/SRC/slatsqr.f +++ b/lapack-netlib/SRC/slatsqr.f @@ -101,15 +101,18 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) REAL array, dimension (MAX(1,LWORK)) +*> (workspace) REAL array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= NB*N. +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= NB*N, otherwise. +*> *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim @@ -161,33 +164,39 @@ *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 *> \endverbatim *> +*> \ingroup latsqr +*> * ===================================================================== SUBROUTINE SLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, - $ LWORK, INFO) + $ LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- * * .. Scalar Arguments .. - INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK + INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK * .. * .. Array Arguments .. - REAL A( LDA, * ), WORK( * ), T(LDT, *) + REAL A( LDA, * ), WORK( * ), T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LQUERY - INTEGER I, II, KK, CTR + LOGICAL LQUERY + INTEGER I, II, KK, CTR, MINMN, LWMIN * .. * .. EXTERNAL FUNCTIONS .. LOGICAL LSAME EXTERNAL LSAME + REAL SROUNDUP_LWORK + EXTERNAL SROUNDUP_LWORK +* .. * .. EXTERNAL SUBROUTINES .. EXTERNAL SGEQRT, STPQRT, XERBLA +* .. * .. INTRINSIC FUNCTIONS .. INTRINSIC MAX, MIN, MOD * .. @@ -198,6 +207,13 @@ SUBROUTINE SLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, INFO = 0 * LQUERY = ( LWORK.EQ.-1 ) +* + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = N*NB + END IF * IF( M.LT.0 ) THEN INFO = -1 @@ -205,64 +221,65 @@ SUBROUTINE SLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, INFO = -2 ELSE IF( MB.LT.1 ) THEN INFO = -3 - ELSE IF( NB.LT.1 .OR. ( NB.GT.N .AND. N.GT.0 )) THEN + ELSE IF( NB.LT.1 .OR. ( NB.GT.N .AND. N.GT.0 ) ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -6 ELSE IF( LDT.LT.NB ) THEN INFO = -8 - ELSE IF( LWORK.LT.(N*NB) .AND. (.NOT.LQUERY) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -10 END IF - IF( INFO.EQ.0) THEN - WORK(1) = NB*N +* + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SLATSQR', -INFO ) RETURN - ELSE IF (LQUERY) THEN - RETURN + ELSE IF( LQUERY ) THEN + RETURN END IF * * Quick return if possible * - IF( MIN(M,N).EQ.0 ) THEN - RETURN + IF( MINMN.EQ.0 ) THEN + RETURN END IF * * The QR Decomposition * - IF ((MB.LE.N).OR.(MB.GE.M)) THEN - CALL SGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO) - RETURN - END IF - KK = MOD((M-N),(MB-N)) - II=M-KK+1 + IF( (MB.LE.N) .OR. (MB.GE.M) ) THEN + CALL SGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO ) + RETURN + END IF + KK = MOD((M-N),(MB-N)) + II = M-KK+1 * -* Compute the QR factorization of the first block A(1:MB,1:N) +* Compute the QR factorization of the first block A(1:MB,1:N) * - CALL SGEQRT( MB, N, NB, A(1,1), LDA, T, LDT, WORK, INFO ) + CALL SGEQRT( MB, N, NB, A(1,1), LDA, T, LDT, WORK, INFO ) * - CTR = 1 - DO I = MB+1, II-MB+N , (MB-N) + CTR = 1 + DO I = MB+1, II-MB+N, (MB-N) * -* Compute the QR factorization of the current block A(I:I+MB-N,1:N) +* Compute the QR factorization of the current block A(I:I+MB-N,1:N) * - CALL STPQRT( MB-N, N, 0, NB, A(1,1), LDA, A( I, 1 ), LDA, - $ T(1, CTR * N + 1), - $ LDT, WORK, INFO ) - CTR = CTR + 1 - END DO + CALL STPQRT( MB-N, N, 0, NB, A(1,1), LDA, A( I, 1 ), LDA, + $ T(1, CTR * N + 1), + $ LDT, WORK, INFO ) + CTR = CTR + 1 + END DO * -* Compute the QR factorization of the last block A(II:M,1:N) +* Compute the QR factorization of the last block A(II:M,1:N) * - IF (II.LE.M) THEN - CALL STPQRT( KK, N, 0, NB, A(1,1), LDA, A( II, 1 ), LDA, - $ T(1, CTR * N + 1), LDT, - $ WORK, INFO ) - END IF + IF( II.LE.M ) THEN + CALL STPQRT( KK, N, 0, NB, A(1,1), LDA, A( II, 1 ), LDA, + $ T(1, CTR * N + 1), LDT, + $ WORK, INFO ) + END IF * - work( 1 ) = N*NB + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN * * End of SLATSQR diff --git a/lapack-netlib/SRC/ssyevd.f b/lapack-netlib/SRC/ssyevd.f index a5e4638d6f..2ae44fc813 100644 --- a/lapack-netlib/SRC/ssyevd.f +++ b/lapack-netlib/SRC/ssyevd.f @@ -96,8 +96,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL array, -*> dimension (LWORK) +*> WORK is REAL array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> @@ -251,7 +250,7 @@ SUBROUTINE SSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, $ N*ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 ) ) LIOPT = LIWMIN END IF - WORK( 1 ) = SROUNDUP_LWORK(LOPT) + WORK( 1 ) = SROUNDUP_LWORK( LOPT ) IWORK( 1 ) = LIOPT * IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN @@ -335,7 +334,7 @@ SUBROUTINE SSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, IF( ISCALE.EQ.1 ) $ CALL SSCAL( N, ONE / SIGMA, W, 1 ) * - WORK( 1 ) = SROUNDUP_LWORK(LOPT) + WORK( 1 ) = SROUNDUP_LWORK( LOPT ) IWORK( 1 ) = LIOPT * RETURN diff --git a/lapack-netlib/SRC/ssyevr.f b/lapack-netlib/SRC/ssyevr.f index 47e4d7cbf3..870facd606 100644 --- a/lapack-netlib/SRC/ssyevr.f +++ b/lapack-netlib/SRC/ssyevr.f @@ -271,7 +271,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,26*N). +*> The dimension of the array WORK. +*> If N <= 1, LWORK >= 1, else LWORK >= 26*N. *> For optimal efficiency, LWORK >= (NB+6)*N, *> where NB is the max of the blocksize for SSYTRD and SORMTR *> returned by ILAENV. @@ -292,7 +293,8 @@ *> \param[in] LIWORK *> \verbatim *> LIWORK is INTEGER -*> The dimension of the array IWORK. LIWORK >= max(1,10*N). +*> The dimension of the array IWORK. +*> If N <= 1, LIWORK >= 1, else LIWORK >= 10*N. *> *> If LIWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal sizes of the WORK and @@ -392,8 +394,13 @@ SUBROUTINE SSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, * LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) ) * - LWMIN = MAX( 1, 26*N ) - LIWMIN = MAX( 1, 10*N ) + IF( N.LE.1 ) THEN + LWMIN = 1 + LIWMIN = 1 + ELSE + LWMIN = 26*N + LIWMIN = 10*N + END IF * INFO = 0 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN @@ -428,7 +435,7 @@ SUBROUTINE SSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 ) NB = MAX( NB, ILAENV( 1, 'SORMTR', UPLO, N, -1, -1, -1 ) ) LWKOPT = MAX( ( NB+1 )*N, LWMIN ) - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) IWORK( 1 ) = LIWMIN * IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN @@ -677,7 +684,7 @@ SUBROUTINE SSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, * * Set WORK(1) to optimal workspace size. * - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) IWORK( 1 ) = LIWMIN * RETURN diff --git a/lapack-netlib/SRC/ssyevr_2stage.f b/lapack-netlib/SRC/ssyevr_2stage.f index a2d6a62317..471e259776 100644 --- a/lapack-netlib/SRC/ssyevr_2stage.f +++ b/lapack-netlib/SRC/ssyevr_2stage.f @@ -278,6 +278,7 @@ *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. +*> If N <= 1, LWORK must be at least 1. *> If JOBZ = 'N' and N > 1, LWORK must be queried. *> LWORK = MAX(1, 26*N, dimension) where *> dimension = max(stage1,stage2) + (KD+1)*N + 5*N @@ -300,13 +301,14 @@ *> \param[out] IWORK *> \verbatim *> IWORK is INTEGER array, dimension (MAX(1,LIWORK)) -*> On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. +*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. *> \endverbatim *> *> \param[in] LIWORK *> \verbatim *> LIWORK is INTEGER -*> The dimension of the array IWORK. LIWORK >= max(1,10*N). +*> The dimension of the array IWORK. +*> If N <= 1, LIWORK >= 1, else LIWORK >= 10*N. *> *> If LIWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal size of the IWORK array, @@ -445,8 +447,14 @@ SUBROUTINE SSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IB = ILAENV2STAGE( 2, 'SSYTRD_2STAGE', JOBZ, N, KD, -1, -1 ) LHTRD = ILAENV2STAGE( 3, 'SSYTRD_2STAGE', JOBZ, N, KD, IB, -1 ) LWTRD = ILAENV2STAGE( 4, 'SSYTRD_2STAGE', JOBZ, N, KD, IB, -1 ) - LWMIN = MAX( 26*N, 5*N + LHTRD + LWTRD ) - LIWMIN = MAX( 1, 10*N ) +* + IF( N.LE.1 ) THEN + LWMIN = 1 + LIWMIN = 1 + ELSE + LWMIN = MAX( 26*N, 5*N + LHTRD + LWTRD ) + LIWMIN = 10*N + END IF * INFO = 0 IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN @@ -485,7 +493,7 @@ SUBROUTINE SSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, * NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 ) * NB = MAX( NB, ILAENV( 1, 'SORMTR', UPLO, N, -1, -1, -1 ) ) * LWKOPT = MAX( ( NB+1 )*N, LWMIN ) - WORK( 1 ) = SROUNDUP_LWORK(LWMIN) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) IWORK( 1 ) = LIWMIN END IF * @@ -505,7 +513,7 @@ SUBROUTINE SSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, END IF * IF( N.EQ.1 ) THEN - WORK( 1 ) = 26 + WORK( 1 ) = 1 IF( ALLEIG .OR. INDEIG ) THEN M = 1 W( 1 ) = A( 1, 1 ) @@ -733,7 +741,7 @@ SUBROUTINE SSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, * * Set WORK(1) to optimal workspace size. * - WORK( 1 ) = SROUNDUP_LWORK(LWMIN) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) IWORK( 1 ) = LIWMIN * RETURN diff --git a/lapack-netlib/SRC/ssyevx.f b/lapack-netlib/SRC/ssyevx.f index 2204aa39bc..aaed6dad57 100644 --- a/lapack-netlib/SRC/ssyevx.f +++ b/lapack-netlib/SRC/ssyevx.f @@ -338,14 +338,14 @@ SUBROUTINE SSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, IF( INFO.EQ.0 ) THEN IF( N.LE.1 ) THEN LWKMIN = 1 - WORK( 1 ) = SROUNDUP_LWORK(LWKMIN) + LWKOPT = 1 ELSE LWKMIN = 8*N NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 ) NB = MAX( NB, ILAENV( 1, 'SORMTR', UPLO, N, -1, -1, -1 ) ) LWKOPT = MAX( LWKMIN, ( NB + 3 )*N ) - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) END IF + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) $ INFO = -17 @@ -542,7 +542,7 @@ SUBROUTINE SSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, * * Set WORK(1) to optimal workspace size. * - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/ssysv_aa.f b/lapack-netlib/SRC/ssysv_aa.f index e43d4de7f4..711a275e13 100644 --- a/lapack-netlib/SRC/ssysv_aa.f +++ b/lapack-netlib/SRC/ssysv_aa.f @@ -177,12 +177,13 @@ SUBROUTINE SSYSV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, * * .. Local Scalars .. LOGICAL LQUERY - INTEGER LWKOPT, LWKOPT_SYTRF, LWKOPT_SYTRS + INTEGER LWKMIN, LWKOPT, LWKOPT_SYTRF, LWKOPT_SYTRS * .. * .. External Functions .. LOGICAL LSAME + EXTERNAL LSAME REAL SROUNDUP_LWORK - EXTERNAL LSAME, SROUNDUP_LWORK + EXTERNAL SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL XERBLA, SSYTRS_AA, SSYTRF_AA @@ -196,6 +197,7 @@ SUBROUTINE SSYSV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) + LWKMIN = MAX( 1, 2*N, 3*N-2 ) IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN @@ -206,18 +208,18 @@ SUBROUTINE SSYSV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 - ELSE IF( LWORK.LT.MAX(2*N, 3*N-2) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -10 END IF * IF( INFO.EQ.0 ) THEN CALL SSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, -1, INFO ) - LWKOPT_SYTRF = INT( WORK(1) ) + LWKOPT_SYTRF = INT( WORK( 1 ) ) CALL SSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, $ -1, INFO ) - LWKOPT_SYTRS = INT( WORK(1) ) - LWKOPT = MAX( LWKOPT_SYTRF, LWKOPT_SYTRS ) - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + LWKOPT_SYTRS = INT( WORK( 1 ) ) + LWKOPT = MAX( LWKMIN, LWKOPT_SYTRF, LWKOPT_SYTRS ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -239,7 +241,7 @@ SUBROUTINE SSYSV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, * END IF * - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/ssysv_aa_2stage.f b/lapack-netlib/SRC/ssysv_aa_2stage.f index 3d88e068e6..fb068b3bf7 100644 --- a/lapack-netlib/SRC/ssysv_aa_2stage.f +++ b/lapack-netlib/SRC/ssysv_aa_2stage.f @@ -100,14 +100,14 @@ *> *> \param[out] TB *> \verbatim -*> TB is REAL array, dimension (LTB) +*> TB is REAL array, dimension (MAX(1,LTB)) *> On exit, details of the LU factorization of the band matrix. *> \endverbatim *> *> \param[in] LTB *> \verbatim *> LTB is INTEGER -*> The size of the array TB. LTB >= 4*N, internally +*> The size of the array TB. LTB >= MAX(1,4*N), internally *> used to select NB such that LTB >= (3*NB+1)*N. *> *> If LTB = -1, then a workspace query is assumed; the @@ -147,14 +147,15 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL workspace of size LWORK +*> WORK is REAL workspace of size (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The size of WORK. LWORK >= N, internally used to select NB -*> such that LWORK >= N*NB. +*> The size of WORK. LWORK >= MAX(1,N), internally used to +*> select NB such that LWORK >= N*NB. *> *> If LWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal size of the WORK array, @@ -204,12 +205,13 @@ SUBROUTINE SSYSV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, * .. * .. Local Scalars .. LOGICAL UPPER, TQUERY, WQUERY - INTEGER LWKOPT + INTEGER LWKMIN, LWKOPT * .. * .. External Functions .. LOGICAL LSAME + EXTERNAL LSAME REAL SROUNDUP_LWORK - EXTERNAL LSAME, SROUNDUP_LWORK + EXTERNAL SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL SSYTRF_AA_2STAGE, SSYTRS_AA_2STAGE, @@ -226,6 +228,7 @@ SUBROUTINE SSYSV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, UPPER = LSAME( UPLO, 'U' ) WQUERY = ( LWORK.EQ.-1 ) TQUERY = ( LTB.EQ.-1 ) + LWKMIN = MAX( 1, N ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN @@ -234,18 +237,19 @@ SUBROUTINE SSYSV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 - ELSE IF( LTB.LT.( 4*N ) .AND. .NOT.TQUERY ) THEN + ELSE IF( LTB.LT.MAX( 1, 4*N ) .AND. .NOT.TQUERY ) THEN INFO = -7 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -11 - ELSE IF( LWORK.LT.N .AND. .NOT.WQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.WQUERY ) THEN INFO = -13 END IF * IF( INFO.EQ.0 ) THEN CALL SSYTRF_AA_2STAGE( UPLO, N, A, LDA, TB, -1, IPIV, $ IPIV2, WORK, -1, INFO ) - LWKOPT = INT( WORK(1) ) + LWKOPT = MAX( LWKMIN, INT( WORK( 1 ) ) ) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -255,7 +259,6 @@ SUBROUTINE SSYSV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, RETURN END IF * -* * Compute the factorization A = U**T*T*U or A = L*T*L**T. * CALL SSYTRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, IPIV2, @@ -269,7 +272,7 @@ SUBROUTINE SSYSV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, * END IF * - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/ssysvx.f b/lapack-netlib/SRC/ssysvx.f index 0d72217eb3..06a6413f19 100644 --- a/lapack-netlib/SRC/ssysvx.f +++ b/lapack-netlib/SRC/ssysvx.f @@ -305,7 +305,7 @@ SUBROUTINE SSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, * .. * .. Local Scalars .. LOGICAL LQUERY, NOFACT - INTEGER LWKOPT, NB + INTEGER LWKMIN, LWKOPT, NB REAL ANORM * .. * .. External Functions .. @@ -327,6 +327,7 @@ SUBROUTINE SSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, INFO = 0 NOFACT = LSAME( FACT, 'N' ) LQUERY = ( LWORK.EQ.-1 ) + LWKMIN = MAX( 1, 3*N ) IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN INFO = -1 ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) @@ -344,12 +345,12 @@ SUBROUTINE SSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, INFO = -11 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -13 - ELSE IF( LWORK.LT.MAX( 1, 3*N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -18 END IF * IF( INFO.EQ.0 ) THEN - LWKOPT = MAX( 1, 3*N ) + LWKOPT = LWKMIN IF( NOFACT ) THEN NB = ILAENV( 1, 'SSYTRF', UPLO, N, -1, -1, -1 ) LWKOPT = MAX( LWKOPT, N*NB ) diff --git a/lapack-netlib/SRC/ssytrd_2stage.f b/lapack-netlib/SRC/ssytrd_2stage.f index 5d70ae0d4a..5b401c3d04 100644 --- a/lapack-netlib/SRC/ssytrd_2stage.f +++ b/lapack-netlib/SRC/ssytrd_2stage.f @@ -4,23 +4,23 @@ * * =========== DOCUMENTATION =========== * -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ * *> \htmlonly -*> Download SSYTRD_2STAGE + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> +*> Download SSYTRD_2STAGE + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> *> [TXT] -*> \endhtmlonly +*> \endhtmlonly * * Definition: * =========== * -* SUBROUTINE SSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, +* SUBROUTINE SSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, * HOUS2, LHOUS2, WORK, LWORK, INFO ) * * IMPLICIT NONE @@ -34,7 +34,7 @@ * REAL A( LDA, * ), TAU( * ), * HOUS2( * ), WORK( * ) * .. -* +* * *> \par Purpose: * ============= @@ -52,11 +52,11 @@ *> \param[in] VECT *> \verbatim *> VECT is CHARACTER*1 -*> = 'N': No need for the Housholder representation, +*> = 'N': No need for the Housholder representation, *> in particular for the second stage (Band to *> tridiagonal) and thus LHOUS2 is of size max(1, 4*N); -*> = 'V': the Householder representation is needed to -*> either generate Q1 Q2 or to apply Q1 Q2, +*> = 'V': the Householder representation is needed to +*> either generate Q1 Q2 or to apply Q1 Q2, *> then LHOUS2 is to be queried and computed. *> (NOT AVAILABLE IN THIS RELEASE). *> \endverbatim @@ -86,7 +86,7 @@ *> triangular part of A is not referenced. *> On exit, if UPLO = 'U', the band superdiagonal *> of A are overwritten by the corresponding elements of the -*> internal band-diagonal matrix AB, and the elements above +*> internal band-diagonal matrix AB, and the elements above *> the KD superdiagonal, with the array TAU, represent the orthogonal *> matrix Q1 as a product of elementary reflectors; if UPLO *> = 'L', the diagonal and band subdiagonal of A are over- @@ -117,13 +117,13 @@ *> \param[out] TAU *> \verbatim *> TAU is REAL array, dimension (N-KD) -*> The scalar factors of the elementary reflectors of +*> The scalar factors of the elementary reflectors of *> the first stage (see Further Details). *> \endverbatim *> *> \param[out] HOUS2 *> \verbatim -*> HOUS2 is REAL array, dimension (LHOUS2) +*> HOUS2 is REAL array, dimension (MAX(1,LHOUS2)) *> Stores the Householder representation of the stage2 *> band to tridiagonal. *> \endverbatim @@ -132,6 +132,8 @@ *> \verbatim *> LHOUS2 is INTEGER *> The dimension of the array HOUS2. +*> LHOUS2 >= 1. +*> *> If LWORK = -1, or LHOUS2 = -1, *> then a query is assumed; the routine *> only calculates the optimal size of the HOUS2 array, returns @@ -149,17 +151,19 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK = MAX(1, dimension) -*> If LWORK = -1, or LHOUS2=-1, +*> The dimension of the array WORK. +*> If N = 0, LWORK >= 1, else LWORK = MAX(1, dimension). +*> +*> If LWORK = -1, or LHOUS2 = -1, *> then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> LWORK = MAX(1, dimension) where *> dimension = max(stage1,stage2) + (KD+1)*N -*> = N*KD + N*max(KD+1,FACTOPTNB) -*> + max(2*KD*KD, KD*NTHREADS) -*> + (KD+1)*N +*> = N*KD + N*max(KD+1,FACTOPTNB) +*> + max(2*KD*KD, KD*NTHREADS) +*> + (KD+1)*N *> where KD is the blocking size of the reduction, *> FACTOPTNB is the blocking used by the QR or LQ *> algorithm, usually FACTOPTNB=128 is a good choice @@ -177,12 +181,12 @@ * Authors: * ======== * -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. * -*> \ingroup realSYcomputational +*> \ingroup hetrd_2stage * *> \par Further Details: * ===================== @@ -202,7 +206,7 @@ *> http://doi.acm.org/10.1145/2063384.2063394 *> *> A. Haidar, J. Kurzak, P. Luszczek, 2013. -*> An improved parallel singular value algorithm and its implementation +*> An improved parallel singular value algorithm and its implementation *> for multicore hardware, In Proceedings of 2013 International Conference *> for High Performance Computing, Networking, Storage and Analysis (SC '13). *> Denver, Colorado, USA, 2013. @@ -210,16 +214,16 @@ *> http://doi.acm.org/10.1145/2503210.2503292 *> *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. -*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure +*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure *> calculations based on fine-grained memory aware tasks. *> International Journal of High Performance Computing Applications. *> Volume 28 Issue 2, Pages 196-209, May 2014. -*> http://hpc.sagepub.com/content/28/2/196 +*> http://hpc.sagepub.com/content/28/2/196 *> *> \endverbatim *> * ===================================================================== - SUBROUTINE SSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, + SUBROUTINE SSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, $ HOUS2, LHOUS2, WORK, LWORK, INFO ) * IMPLICIT NONE @@ -265,10 +269,13 @@ SUBROUTINE SSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, * KD = ILAENV2STAGE( 1, 'SSYTRD_2STAGE', VECT, N, -1, -1, -1 ) IB = ILAENV2STAGE( 2, 'SSYTRD_2STAGE', VECT, N, KD, -1, -1 ) - LHMIN = ILAENV2STAGE( 3, 'SSYTRD_2STAGE', VECT, N, KD, IB, -1 ) - LWMIN = ILAENV2STAGE( 4, 'SSYTRD_2STAGE', VECT, N, KD, IB, -1 ) -* WRITE(*,*),'SSYTRD_2STAGE N KD UPLO LHMIN LWMIN ',N, KD, UPLO, -* $ LHMIN, LWMIN + IF( N.EQ.0 ) THEN + LHMIN = 1 + LWMIN = 1 + ELSE + LHMIN = ILAENV2STAGE( 3, 'SSYTRD_2STAGE', VECT, N, KD, IB, -1 ) + LWMIN = ILAENV2STAGE( 4, 'SSYTRD_2STAGE', VECT, N, KD, IB, -1 ) + END IF * IF( .NOT.LSAME( VECT, 'N' ) ) THEN INFO = -1 @@ -309,14 +316,14 @@ SUBROUTINE SSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, LWRK = LWORK-LDAB*N ABPOS = 1 WPOS = ABPOS + LDAB*N - CALL SSYTRD_SY2SB( UPLO, N, KD, A, LDA, WORK( ABPOS ), LDAB, + CALL SSYTRD_SY2SB( UPLO, N, KD, A, LDA, WORK( ABPOS ), LDAB, $ TAU, WORK( WPOS ), LWRK, INFO ) IF( INFO.NE.0 ) THEN CALL XERBLA( 'SSYTRD_SY2SB', -INFO ) RETURN END IF - CALL SSYTRD_SB2ST( 'Y', VECT, UPLO, N, KD, - $ WORK( ABPOS ), LDAB, D, E, + CALL SSYTRD_SB2ST( 'Y', VECT, UPLO, N, KD, + $ WORK( ABPOS ), LDAB, D, E, $ HOUS2, LHOUS2, WORK( WPOS ), LWRK, INFO ) IF( INFO.NE.0 ) THEN CALL XERBLA( 'SSYTRD_SB2ST', -INFO ) @@ -324,8 +331,7 @@ SUBROUTINE SSYTRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, END IF * * - HOUS2( 1 ) = LHMIN - WORK( 1 ) = LWMIN + WORK( 1 ) = LWMIN RETURN * * End of SSYTRD_2STAGE diff --git a/lapack-netlib/SRC/ssytrd_sb2st.F b/lapack-netlib/SRC/ssytrd_sb2st.F index 32bae26dc0..111eaa93ec 100644 --- a/lapack-netlib/SRC/ssytrd_sb2st.F +++ b/lapack-netlib/SRC/ssytrd_sb2st.F @@ -132,15 +132,17 @@ *> *> \param[out] HOUS *> \verbatim -*> HOUS is REAL array, dimension LHOUS, that -*> store the Householder representation. +*> HOUS is REAL array, dimension (MAX(1,LHOUS)) +*> Stores the Householder representation. *> \endverbatim *> *> \param[in] LHOUS *> \verbatim *> LHOUS is INTEGER -*> The dimension of the array HOUS. LHOUS = MAX(1, dimension) -*> If LWORK = -1, or LHOUS=-1, +*> The dimension of the array HOUS. +*> If N = 0 or KD <= 1, LHOUS >= 1, else LHOUS = MAX(1, dimension) +*> +*> If LWORK = -1, or LHOUS = -1, *> then a query is assumed; the routine *> only calculates the optimal size of the HOUS array, returns *> this value as the first entry of the HOUS array, and no error @@ -152,14 +154,17 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL array, dimension LWORK. +*> WORK is REAL array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK = MAX(1, dimension) -*> If LWORK = -1, or LHOUS=-1, +*> The dimension of the array WORK. +*> IF N = 0 or KD <= 1, LWORK >= 1, else LWORK = MAX(1, dimension) +*> +*> If LWORK = -1, or LHOUS = -1, *> then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error @@ -261,7 +266,7 @@ SUBROUTINE SSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, INTEGER I, M, K, IB, SWEEPID, MYID, SHIFT, STT, ST, $ ED, STIND, EDIND, BLKLASTIND, COLPT, THED, $ STEPERCOL, GRSIZ, THGRSIZ, THGRNB, THGRID, - $ NBTILES, TTYPE, TID, NTHREADS, DEBUG, + $ NBTILES, TTYPE, TID, NTHREADS, $ ABDPOS, ABOFDPOS, DPOS, OFDPOS, AWPOS, $ INDA, INDW, APOS, SIZEA, LDA, INDV, INDTAU, $ SISEV, SIZETAU, LDV, LHMIN, LWMIN @@ -283,7 +288,6 @@ SUBROUTINE SSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * Determine the minimal workspace size required. * Test the input parameters * - DEBUG = 0 INFO = 0 AFTERS1 = LSAME( STAGE1, 'Y' ) WANTQ = LSAME( VECT, 'V' ) @@ -292,9 +296,14 @@ SUBROUTINE SSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * * Determine the block size, the workspace size and the hous size. * - IB = ILAENV2STAGE( 2, 'SSYTRD_SB2ST', VECT, N, KD, -1, -1 ) - LHMIN = ILAENV2STAGE( 3, 'SSYTRD_SB2ST', VECT, N, KD, IB, -1 ) - LWMIN = ILAENV2STAGE( 4, 'SSYTRD_SB2ST', VECT, N, KD, IB, -1 ) + IB = ILAENV2STAGE( 2, 'SSYTRD_SB2ST', VECT, N, KD, -1, -1 ) + IF( N.EQ.0 .OR. KD.LE.1 ) THEN + LHMIN = 1 + LWMIN = 1 + ELSE + LHMIN = ILAENV2STAGE( 3, 'SSYTRD_SB2ST', VECT, N, KD, IB, -1 ) + LWMIN = ILAENV2STAGE( 4, 'SSYTRD_SB2ST', VECT, N, KD, IB, -1 ) + END IF * IF( .NOT.AFTERS1 .AND. .NOT.LSAME( STAGE1, 'N' ) ) THEN INFO = -1 @@ -315,8 +324,8 @@ SUBROUTINE SSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, END IF * IF( INFO.EQ.0 ) THEN - HOUS( 1 ) = LHMIN - WORK( 1 ) = SROUNDUP_LWORK(LWMIN) + HOUS( 1 ) = SROUNDUP_LWORK( LHMIN ) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) END IF * IF( INFO.NE.0 ) THEN @@ -544,8 +553,7 @@ SUBROUTINE SSYTRD_SB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, 170 CONTINUE ENDIF * - HOUS( 1 ) = LHMIN - WORK( 1 ) = SROUNDUP_LWORK(LWMIN) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN * * End of SSYTRD_SB2ST diff --git a/lapack-netlib/SRC/ssytrd_sy2sb.f b/lapack-netlib/SRC/ssytrd_sy2sb.f index 4efc436302..3996e07bba 100644 --- a/lapack-netlib/SRC/ssytrd_sy2sb.f +++ b/lapack-netlib/SRC/ssytrd_sy2sb.f @@ -124,7 +124,7 @@ *> \param[out] WORK *> \verbatim *> WORK is REAL array, dimension (LWORK) -*> On exit, if INFO = 0, or if LWORK=-1, +*> On exit, if INFO = 0, or if LWORK = -1, *> WORK(1) returns the size of LWORK. *> \endverbatim *> @@ -132,7 +132,9 @@ *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK which should be calculated -*> by a workspace query. LWORK = MAX(1, LWORK_QUERY) +*> by a workspace query. +*> If N <= KD+1, LWORK >= 1, else LWORK = MAX(1, LWORK_QUERY) +*> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error @@ -294,8 +296,12 @@ SUBROUTINE SSYTRD_SY2SB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) - LWMIN = ILAENV2STAGE( 4, 'SSYTRD_SY2SB', '', N, KD, -1, -1 ) - + IF( N.LE.KD+1 ) THEN + LWMIN = 1 + ELSE + LWMIN = ILAENV2STAGE( 4, 'SSYTRD_SY2SB', '', N, KD, -1, -1 ) + END IF +* IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN @@ -314,7 +320,7 @@ SUBROUTINE SSYTRD_SY2SB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, CALL XERBLA( 'SSYTRD_SY2SB', -INFO ) RETURN ELSE IF( LQUERY ) THEN - WORK( 1 ) = SROUNDUP_LWORK(LWMIN) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN END IF * @@ -507,7 +513,7 @@ SUBROUTINE SSYTRD_SY2SB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, END IF * - WORK( 1 ) = SROUNDUP_LWORK(LWMIN) + WORK( 1 ) = SROUNDUP_LWORK( LWMIN ) RETURN * * End of SSYTRD_SY2SB diff --git a/lapack-netlib/SRC/ssytrf.f b/lapack-netlib/SRC/ssytrf.f index a788fbcf07..55f3a4f0fe 100644 --- a/lapack-netlib/SRC/ssytrf.f +++ b/lapack-netlib/SRC/ssytrf.f @@ -234,7 +234,7 @@ SUBROUTINE SSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) * NB = ILAENV( 1, 'SSYTRF', UPLO, N, -1, -1, -1 ) LWKOPT = MAX( 1, N*NB ) - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -353,7 +353,8 @@ SUBROUTINE SSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) END IF * 40 CONTINUE - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) +* + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN * * End of SSYTRF diff --git a/lapack-netlib/SRC/ssytrf_aa.f b/lapack-netlib/SRC/ssytrf_aa.f index d6408a9788..af32fb064a 100644 --- a/lapack-netlib/SRC/ssytrf_aa.f +++ b/lapack-netlib/SRC/ssytrf_aa.f @@ -101,8 +101,10 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >= MAX(1,2*N). For optimum performance -*> LWORK >= N*(1+NB), where NB is the optimal blocksize. +*> The length of WORK. +*> LWORK >= 1, if N <= 1, and LWORK >= 2*N, otherwise. +*> For optimum performance LWORK >= N*(1+NB), where NB is +*> the optimal blocksize, returned by ILAENV. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -128,7 +130,7 @@ *> \ingroup hetrf_aa * * ===================================================================== - SUBROUTINE SSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) + SUBROUTINE SSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- @@ -142,19 +144,19 @@ SUBROUTINE SSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) * .. * .. Array Arguments .. INTEGER IPIV( * ) - REAL A( LDA, * ), WORK( * ) + REAL A( LDA, * ), WORK( * ) * .. * * ===================================================================== * .. Parameters .. - REAL ZERO, ONE + REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * * .. Local Scalars .. LOGICAL LQUERY, UPPER - INTEGER J, LWKOPT + INTEGER J, LWKMIN, LWKOPT INTEGER NB, MJ, NJ, K1, K2, J1, J2, J3, JB - REAL ALPHA + REAL ALPHA * .. * .. External Functions .. LOGICAL LSAME @@ -180,19 +182,26 @@ SUBROUTINE SSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) + IF( N.LE.1 ) THEN + LWKMIN = 1 + LWKOPT = 1 + ELSE + LWKMIN = 2*N + LWKOPT = (NB+1)*N + END IF +* IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -7 END IF * IF( INFO.EQ.0 ) THEN - LWKOPT = (NB+1)*N - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -204,11 +213,11 @@ SUBROUTINE SSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) * * Quick return * - IF ( N.EQ.0 ) THEN + IF( N.EQ.0 ) THEN RETURN ENDIF IPIV( 1 ) = 1 - IF ( N.EQ.1 ) THEN + IF( N.EQ.1 ) THEN RETURN END IF * @@ -458,7 +467,8 @@ SUBROUTINE SSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) END IF * 20 CONTINUE - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) +* + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN * * End of SSYTRF_AA diff --git a/lapack-netlib/SRC/ssytrf_aa_2stage.f b/lapack-netlib/SRC/ssytrf_aa_2stage.f index abe6564c5d..6b5cdee1bc 100644 --- a/lapack-netlib/SRC/ssytrf_aa_2stage.f +++ b/lapack-netlib/SRC/ssytrf_aa_2stage.f @@ -94,7 +94,7 @@ *> \param[in] LTB *> \verbatim *> LTB is INTEGER -*> The size of the array TB. LTB >= 4*N, internally +*> The size of the array TB. LTB >= MAX(1,4*N), internally *> used to select NB such that LTB >= (3*NB+1)*N. *> *> If LTB = -1, then a workspace query is assumed; the @@ -121,14 +121,14 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL workspace of size LWORK +*> WORK is REAL workspace of size (MAX(1,LWORK)) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The size of WORK. LWORK >= N, internally used to select NB -*> such that LWORK >= N*NB. +*> The size of WORK. LWORK >= MAX(1,N), internally used to +*> select NB such that LWORK >= N*NB. *> *> If LWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal size of the WORK array, @@ -212,9 +212,9 @@ SUBROUTINE SSYTRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF ( LTB .LT. 4*N .AND. .NOT.TQUERY ) THEN + ELSE IF( LTB.LT.MAX( 1, 4*N ) .AND. .NOT.TQUERY ) THEN INFO = -6 - ELSE IF ( LWORK .LT. N .AND. .NOT.WQUERY ) THEN + ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.WQUERY ) THEN INFO = -10 END IF * @@ -228,10 +228,10 @@ SUBROUTINE SSYTRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, NB = ILAENV( 1, 'SSYTRF_AA_2STAGE', UPLO, N, -1, -1, -1 ) IF( INFO.EQ.0 ) THEN IF( TQUERY ) THEN - TB( 1 ) = (3*NB+1)*N + TB( 1 ) = SROUNDUP_LWORK( MAX( 1, (3*NB+1)*N ) ) END IF IF( WQUERY ) THEN - WORK( 1 ) = SROUNDUP_LWORK(N*NB) + WORK( 1 ) = SROUNDUP_LWORK( MAX( 1, N*NB ) ) END IF END IF IF( TQUERY .OR. WQUERY ) THEN @@ -240,7 +240,7 @@ SUBROUTINE SSYTRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, * * Quick return * - IF ( N.EQ.0 ) THEN + IF( N.EQ.0 ) THEN RETURN ENDIF * diff --git a/lapack-netlib/SRC/ssytrf_rk.f b/lapack-netlib/SRC/ssytrf_rk.f index 72830543cf..89ecf38fde 100644 --- a/lapack-netlib/SRC/ssytrf_rk.f +++ b/lapack-netlib/SRC/ssytrf_rk.f @@ -177,14 +177,14 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL array, dimension ( MAX(1,LWORK) ). +*> WORK is REAL array, dimension (MAX(1,LWORK)). *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >=1. For best performance +*> The length of WORK. LWORK >= 1. For best performance *> LWORK >= N*NB, where NB is the block size returned *> by ILAENV. *> @@ -312,7 +312,7 @@ SUBROUTINE SSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, * NB = ILAENV( 1, 'SSYTRF_RK', UPLO, N, -1, -1, -1 ) LWKOPT = MAX( 1, N*NB ) - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -488,7 +488,7 @@ SUBROUTINE SSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, * END IF * - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN * * End of SSYTRF_RK diff --git a/lapack-netlib/SRC/ssytrf_rook.f b/lapack-netlib/SRC/ssytrf_rook.f index 339a229e7c..7c2cbbc57e 100644 --- a/lapack-netlib/SRC/ssytrf_rook.f +++ b/lapack-netlib/SRC/ssytrf_rook.f @@ -118,7 +118,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >=1. For best performance +*> The length of WORK. LWORK >= 1. For best performance *> LWORK >= N*NB, where NB is the block size returned by ILAENV. *> *> If LWORK = -1, then a workspace query is assumed; the routine @@ -260,7 +260,7 @@ SUBROUTINE SSYTRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) * NB = ILAENV( 1, 'SSYTRF_ROOK', UPLO, N, -1, -1, -1 ) LWKOPT = MAX( 1, N*NB ) - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -383,7 +383,8 @@ SUBROUTINE SSYTRF_ROOK( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) END IF * 40 CONTINUE - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) +* + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) RETURN * * End of SSYTRF_ROOK diff --git a/lapack-netlib/SRC/ssytri2.f b/lapack-netlib/SRC/ssytri2.f index 49f6cad652..fd1c53473d 100644 --- a/lapack-netlib/SRC/ssytri2.f +++ b/lapack-netlib/SRC/ssytri2.f @@ -88,16 +88,16 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL array, dimension (N+NB+1)*(NB+3) +*> WORK is REAL array, dimension (MAX(1,LWORK)) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. -*> WORK is size >= (N+NB+1)*(NB+3) +*> If N = 0, LWORK >= 1, else LWORK >= (N+NB+1)*(NB+3). *> If LWORK = -1, then a workspace query is assumed; the routine -*> calculates: +*> calculates: *> - the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, *> - and no error message related to LWORK is issued by XERBLA. @@ -120,7 +120,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup realSYcomputational +*> \ingroup hetri2 * * ===================================================================== SUBROUTINE SSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) @@ -147,7 +147,8 @@ SUBROUTINE SSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) * .. External Functions .. LOGICAL LSAME INTEGER ILAENV - EXTERNAL LSAME, ILAENV + REAL SROUNDUP_LWORK + EXTERNAL LSAME, ILAENV, SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL SSYTRI, SSYTRI2X, XERBLA @@ -159,9 +160,13 @@ SUBROUTINE SSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) +* * Get blocksize +* NBMAX = ILAENV( 1, 'SSYTRF', UPLO, N, -1, -1, -1 ) - IF ( NBMAX .GE. N ) THEN + IF( N.EQ.0 ) THEN + MINSIZE = 1 + ELSE IF( NBMAX.GE.N ) THEN MINSIZE = N ELSE MINSIZE = (N+NBMAX+1)*(NBMAX+3) @@ -173,28 +178,29 @@ SUBROUTINE SSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF (LWORK .LT. MINSIZE .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.MINSIZE .AND. .NOT.LQUERY ) THEN INFO = -7 END IF -* -* Quick return if possible -* * IF( INFO.NE.0 ) THEN CALL XERBLA( 'SSYTRI2', -INFO ) RETURN ELSE IF( LQUERY ) THEN - WORK(1)=MINSIZE + WORK( 1 ) = SROUNDUP_LWORK( MINSIZE ) RETURN END IF +* +* Quick return if possible +* IF( N.EQ.0 ) $ RETURN - - IF( NBMAX .GE. N ) THEN +* + IF( NBMAX.GE.N ) THEN CALL SSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO ) ELSE CALL SSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NBMAX, INFO ) END IF +* RETURN * * End of SSYTRI2 diff --git a/lapack-netlib/SRC/ssytri_3.f b/lapack-netlib/SRC/ssytri_3.f index bca01105d5..f0152a1499 100644 --- a/lapack-netlib/SRC/ssytri_3.f +++ b/lapack-netlib/SRC/ssytri_3.f @@ -119,16 +119,17 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is REAL array, dimension (N+NB+1)*(NB+3). +*> WORK is REAL array, dimension (MAX(1,LWORK)). *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >= (N+NB+1)*(NB+3). +*> The length of WORK. +*> If N = 0, LWORK >= 1, else LWORK >= (N+NB+1)*(NB+3). *> -*> If LDWORK = -1, then a workspace query is assumed; +*> If LWORK = -1, then a workspace query is assumed; *> the routine only calculates the optimal size of the optimal *> size of the WORK array, returns this value as the first *> entry of the WORK array, and no error message related to @@ -209,8 +210,13 @@ SUBROUTINE SSYTRI_3( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, * * Determine the block size * - NB = MAX( 1, ILAENV( 1, 'SSYTRI_3', UPLO, N, -1, -1, -1 ) ) - LWKOPT = ( N+NB+1 ) * ( NB+3 ) + IF( N.EQ.0 ) THEN + LWKOPT = 1 + ELSE + NB = MAX( 1, ILAENV( 1, 'SSYTRI_3', UPLO, N, -1, -1, -1 ) ) + LWKOPT = ( N+NB+1 ) * ( NB+3 ) + END IF + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 @@ -218,7 +224,7 @@ SUBROUTINE SSYTRI_3( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF ( LWORK .LT. LWKOPT .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKOPT .AND. .NOT.LQUERY ) THEN INFO = -8 END IF * @@ -226,7 +232,6 @@ SUBROUTINE SSYTRI_3( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, CALL XERBLA( 'SSYTRI_3', -INFO ) RETURN ELSE IF( LQUERY ) THEN - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) RETURN END IF * @@ -237,7 +242,7 @@ SUBROUTINE SSYTRI_3( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, * CALL SSYTRI_3X( UPLO, N, A, LDA, E, IPIV, WORK, NB, INFO ) * - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKOPT ) * RETURN * diff --git a/lapack-netlib/SRC/ssytrs_aa.f b/lapack-netlib/SRC/ssytrs_aa.f index 12fca0c716..265cf0c1dd 100644 --- a/lapack-netlib/SRC/ssytrs_aa.f +++ b/lapack-netlib/SRC/ssytrs_aa.f @@ -105,7 +105,13 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,3*N-2). +*> The dimension of the array WORK. +*> If MIN(N,NRHS) = 0, LWORK >= 1, else LWORK >= 3*N-2. +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the minimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO @@ -141,7 +147,7 @@ SUBROUTINE SSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, * .. * .. Array Arguments .. INTEGER IPIV( * ) - REAL A( LDA, * ), B( LDB, * ), WORK( * ) + REAL A( LDA, * ), B( LDB, * ), WORK( * ) * .. * * ===================================================================== @@ -151,24 +157,31 @@ SUBROUTINE SSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, * .. * .. Local Scalars .. LOGICAL LQUERY, UPPER - INTEGER K, KP, LWKOPT + INTEGER K, KP, LWKMIN * .. * .. External Functions .. LOGICAL LSAME + EXTERNAL LSAME REAL SROUNDUP_LWORK - EXTERNAL LSAME, SROUNDUP_LWORK + EXTERNAL SROUNDUP_LWORK * .. * .. External Subroutines .. EXTERNAL SGTSV, SSWAP, SLACPY, STRSM, XERBLA * .. * .. Intrinsic Functions .. - INTRINSIC MAX + INTRINSIC MIN, MAX * .. * .. Executable Statements .. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) + IF( MIN( N, NRHS ).EQ.0 ) THEN + LWKMIN = 1 + ELSE + LWKMIN = 3*N-2 + END IF +* IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN @@ -179,21 +192,20 @@ SUBROUTINE SSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 - ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -10 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SSYTRS_AA', -INFO ) RETURN ELSE IF( LQUERY ) THEN - LWKOPT = (3*N-2) - WORK( 1 ) = SROUNDUP_LWORK(LWKOPT) + WORK( 1 ) = SROUNDUP_LWORK( LWKMIN ) RETURN END IF * * Quick return if possible * - IF( N.EQ.0 .OR. NRHS.EQ.0 ) + IF( MIN( N, NRHS ).EQ.0 ) $ RETURN * IF( UPPER ) THEN diff --git a/lapack-netlib/SRC/zgebrd.f b/lapack-netlib/SRC/zgebrd.f index f1791c6a4b..c1a6169a77 100644 --- a/lapack-netlib/SRC/zgebrd.f +++ b/lapack-netlib/SRC/zgebrd.f @@ -122,7 +122,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of the array WORK. LWORK >= max(1,M,N). +*> The length of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MAX(M,N), otherwise. *> For optimum performance LWORK >= (M+N)*NB, where NB *> is the optimal blocksize. *> @@ -147,7 +148,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16GEcomputational +*> \ingroup gebrd * *> \par Further Details: * ===================== @@ -223,8 +224,8 @@ SUBROUTINE ZGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * .. * .. Local Scalars .. LOGICAL LQUERY - INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB, - $ NBMIN, NX, WS + INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKMIN, LWKOPT, + $ MINMN, NB, NBMIN, NX, WS * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGEBD2, ZGEMM, ZLABRD @@ -241,9 +242,17 @@ SUBROUTINE ZGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * Test the input parameters * INFO = 0 - NB = MAX( 1, ILAENV( 1, 'ZGEBRD', ' ', M, N, -1, -1 ) ) - LWKOPT = ( M+N )*NB + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWKMIN = 1 + LWKOPT = 1 + ELSE + LWKMIN = MAX( M, N ) + NB = MAX( 1, ILAENV( 1, 'ZGEBRD', ' ', M, N, -1, -1 ) ) + LWKOPT = ( M+N )*NB + END IF WORK( 1 ) = DBLE( LWKOPT ) +* LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 @@ -251,7 +260,7 @@ SUBROUTINE ZGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -10 END IF IF( INFO.LT.0 ) THEN @@ -263,7 +272,6 @@ SUBROUTINE ZGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * * Quick return if possible * - MINMN = MIN( M, N ) IF( MINMN.EQ.0 ) THEN WORK( 1 ) = 1 RETURN @@ -282,7 +290,7 @@ SUBROUTINE ZGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK, * Determine when to switch from blocked to unblocked code. * IF( NX.LT.MINMN ) THEN - WS = ( M+N )*NB + WS = LWKOPT IF( LWORK.LT.WS ) THEN * * Not enough work space for the optimal NB, consider using diff --git a/lapack-netlib/SRC/zgehrd.f b/lapack-netlib/SRC/zgehrd.f index e18493cf97..0f4424ded6 100644 --- a/lapack-netlib/SRC/zgehrd.f +++ b/lapack-netlib/SRC/zgehrd.f @@ -89,7 +89,7 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX*16 array, dimension (LWORK) +*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> @@ -120,7 +120,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16GEcomputational +*> \ingroup gehrd * *> \par Further Details: * ===================== @@ -173,7 +173,7 @@ SUBROUTINE ZGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) INTEGER IHI, ILO, INFO, LDA, LWORK, N * .. * .. Array Arguments .. - COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) + COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * ) * .. * * ===================================================================== @@ -182,7 +182,7 @@ SUBROUTINE ZGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) INTEGER NBMAX, LDT, TSIZE PARAMETER ( NBMAX = 64, LDT = NBMAX+1, $ TSIZE = LDT*NBMAX ) - COMPLEX*16 ZERO, ONE + COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ), $ ONE = ( 1.0D+0, 0.0D+0 ) ) * .. @@ -190,7 +190,7 @@ SUBROUTINE ZGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) LOGICAL LQUERY INTEGER I, IB, IINFO, IWT, J, LDWORK, LWKOPT, NB, $ NBMIN, NH, NX - COMPLEX*16 EI + COMPLEX*16 EI * .. * .. External Subroutines .. EXTERNAL ZAXPY, ZGEHD2, ZGEMM, ZLAHR2, ZLARFB, ZTRMM, @@ -221,12 +221,18 @@ SUBROUTINE ZGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) INFO = -8 END IF * + NH = IHI - ILO + 1 IF( INFO.EQ.0 ) THEN * * Compute the workspace requirements * - NB = MIN( NBMAX, ILAENV( 1, 'ZGEHRD', ' ', N, ILO, IHI, -1 ) ) - LWKOPT = N*NB + TSIZE + IF( NH.LE.1 ) THEN + LWKOPT = 1 + ELSE + NB = MIN( NBMAX, ILAENV( 1, 'ZGEHRD', ' ', N, ILO, IHI, + $ -1 ) ) + LWKOPT = N*NB + TSIZE + END IF WORK( 1 ) = LWKOPT ENDIF * @@ -248,7 +254,6 @@ SUBROUTINE ZGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) * * Quick return if possible * - NH = IHI - ILO + 1 IF( NH.LE.1 ) THEN WORK( 1 ) = 1 RETURN @@ -268,7 +273,7 @@ SUBROUTINE ZGEHRD( N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO ) * * Determine if workspace is large enough for blocked code * - IF( LWORK.LT.N*NB+TSIZE ) THEN + IF( LWORK.LT.LWKOPT ) THEN * * Not enough workspace to use optimal NB: determine the * minimum value of NB, and reduce NB or force use of diff --git a/lapack-netlib/SRC/zgelq.f b/lapack-netlib/SRC/zgelq.f index de7c9a3784..86610e8019 100644 --- a/lapack-netlib/SRC/zgelq.f +++ b/lapack-netlib/SRC/zgelq.f @@ -98,7 +98,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1 or -2, then a workspace query is assumed. The routine *> only calculates the sizes of the T and WORK arrays, returns these *> values as the first entries of the T and WORK arrays, and no error @@ -166,6 +166,8 @@ *> the LQ factorization. *> \endverbatim *> +*> \ingroup gelq +*> * ===================================================================== SUBROUTINE ZGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ INFO ) diff --git a/lapack-netlib/SRC/zgelqf.f b/lapack-netlib/SRC/zgelqf.f index 6c295eecec..e988ea818a 100644 --- a/lapack-netlib/SRC/zgelqf.f +++ b/lapack-netlib/SRC/zgelqf.f @@ -93,7 +93,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,M). +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M, otherwise. *> For optimum performance LWORK >= M*NB, where NB is the *> optimal blocksize. *> @@ -118,7 +119,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16GEcomputational +*> \ingroup gelqf * *> \par Further Details: * ===================== @@ -174,9 +175,8 @@ SUBROUTINE ZGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * Test the input arguments * INFO = 0 + K = MIN( M, N ) NB = ILAENV( 1, 'ZGELQF', ' ', M, N, -1, -1 ) - LWKOPT = M*NB - WORK( 1 ) = LWKOPT LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 @@ -184,19 +184,25 @@ SUBROUTINE ZGELQF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, M ) .AND. .NOT.LQUERY ) THEN - INFO = -7 + ELSE IF( .NOT.LQUERY ) THEN + IF( LWORK.LE.0 .OR. ( N.GT.0 .AND. LWORK.LT.MAX( 1, M ) ) ) + $ INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGELQF', -INFO ) RETURN ELSE IF( LQUERY ) THEN + IF( K.EQ.0 ) THEN + LWKOPT = 1 + ELSE + LWKOPT = M*NB + END IF + WORK( 1 ) = LWKOPT RETURN END IF * * Quick return if possible * - K = MIN( M, N ) IF( K.EQ.0 ) THEN WORK( 1 ) = 1 RETURN diff --git a/lapack-netlib/SRC/zgemlq.f b/lapack-netlib/SRC/zgemlq.f index 41cd1c0595..11489087a4 100644 --- a/lapack-netlib/SRC/zgemlq.f +++ b/lapack-netlib/SRC/zgemlq.f @@ -109,16 +109,17 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1, then a workspace query is assumed. The routine *> only calculates the size of the WORK array, returns this -*> value as WORK(1), and no error message related to WORK +*> value as WORK(1), and no error message related to WORK *> is issued by XERBLA. *> \endverbatim *> @@ -142,7 +143,7 @@ *> *> \verbatim *> -*> These details are particular for this LAPACK implementation. Users should not +*> These details are particular for this LAPACK implementation. Users should not *> take them for granted. These details may change in the future, and are not likely *> true for another LAPACK implementation. These details are relevant if one wants *> to try to understand the code. They are not part of the interface. @@ -158,11 +159,13 @@ *> block sizes MB and NB returned by ILAENV, ZGELQ will use either *> ZLASWLQ (if the matrix is wide-and-short) or ZGELQT to compute *> the LQ factorization. -*> This version of ZGEMLQ will use either ZLAMSWLQ or ZGEMLQT to +*> This version of ZGEMLQ will use either ZLAMSWLQ or ZGEMLQT to *> multiply matrix Q by another matrix. *> Further Details in ZLAMSWLQ or ZGEMLQT. *> \endverbatim *> +*> \ingroup gemlq +*> * ===================================================================== SUBROUTINE ZGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, $ C, LDC, WORK, LWORK, INFO ) @@ -184,7 +187,7 @@ SUBROUTINE ZGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * .. * .. Local Scalars .. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER MB, NB, LW, NBLCKS, MN + INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME @@ -200,7 +203,7 @@ SUBROUTINE ZGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Test the input arguments * - LQUERY = LWORK.EQ.-1 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'C' ) LEFT = LSAME( SIDE, 'L' ) @@ -215,6 +218,13 @@ SUBROUTINE ZGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, LW = M * MB MN = N END IF +* + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF * IF( ( NB.GT.K ) .AND. ( MN.GT.K ) ) THEN IF( MOD( MN - K, NB - K ) .EQ. 0 ) THEN @@ -243,7 +253,7 @@ SUBROUTINE ZGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, INFO = -9 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 - ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( ( LWORK.LT.LWMIN ) .AND. ( .NOT.LQUERY ) ) THEN INFO = -13 END IF * @@ -260,7 +270,7 @@ SUBROUTINE ZGEMLQ( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Quick return if possible * - IF( MIN( M, N, K ).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF * diff --git a/lapack-netlib/SRC/zgemqr.f b/lapack-netlib/SRC/zgemqr.f index c83eaff2f1..d14d74fe28 100644 --- a/lapack-netlib/SRC/zgemqr.f +++ b/lapack-netlib/SRC/zgemqr.f @@ -111,16 +111,17 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1, then a workspace query is assumed. The routine *> only calculates the size of the WORK array, returns this -*> value as WORK(1), and no error message related to WORK +*> value as WORK(1), and no error message related to WORK *> is issued by XERBLA. *> \endverbatim *> @@ -144,7 +145,7 @@ *> *> \verbatim *> -*> These details are particular for this LAPACK implementation. Users should not +*> These details are particular for this LAPACK implementation. Users should not *> take them for granted. These details may change in the future, and are not likely *> true for another LAPACK implementation. These details are relevant if one wants *> to try to understand the code. They are not part of the interface. @@ -166,6 +167,8 @@ *> *> \endverbatim *> +*> \ingroup gemqr +*> * ===================================================================== SUBROUTINE ZGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, $ C, LDC, WORK, LWORK, INFO ) @@ -187,7 +190,7 @@ SUBROUTINE ZGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * .. * .. Local Scalars .. LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER MB, NB, LW, NBLCKS, MN + INTEGER MB, NB, LW, NBLCKS, MN, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME @@ -203,7 +206,7 @@ SUBROUTINE ZGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Test the input arguments * - LQUERY = LWORK.EQ.-1 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'C' ) LEFT = LSAME( SIDE, 'L' ) @@ -218,6 +221,13 @@ SUBROUTINE ZGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, LW = MB * NB MN = N END IF +* + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF * IF( ( MB.GT.K ) .AND. ( MN.GT.K ) ) THEN IF( MOD( MN - K, MB - K ).EQ.0 ) THEN @@ -246,12 +256,12 @@ SUBROUTINE ZGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, INFO = -9 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -11 - ELSE IF( ( LWORK.LT.MAX( 1, LW ) ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN INFO = -13 END IF * IF( INFO.EQ.0 ) THEN - WORK( 1 ) = LW + WORK( 1 ) = LWMIN END IF * IF( INFO.NE.0 ) THEN @@ -263,7 +273,7 @@ SUBROUTINE ZGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, * * Quick return if possible * - IF( MIN( M, N, K ).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF * @@ -276,7 +286,7 @@ SUBROUTINE ZGEMQR( SIDE, TRANS, M, N, K, A, LDA, T, TSIZE, $ NB, C, LDC, WORK, LWORK, INFO ) END IF * - WORK( 1 ) = LW + WORK( 1 ) = LWMIN * RETURN * diff --git a/lapack-netlib/SRC/zgeqlf.f b/lapack-netlib/SRC/zgeqlf.f index 94721540c5..a27612c640 100644 --- a/lapack-netlib/SRC/zgeqlf.f +++ b/lapack-netlib/SRC/zgeqlf.f @@ -88,7 +88,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,N). +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= N, otherwise. *> For optimum performance LWORK >= N*NB, where NB is *> the optimal blocksize. *> @@ -113,7 +114,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16GEcomputational +*> \ingroup geqlf * *> \par Further Details: * ===================== @@ -188,8 +189,9 @@ SUBROUTINE ZGEQLF( M, N, A, LDA, TAU, WORK, LWORK, INFO ) END IF WORK( 1 ) = LWKOPT * - IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN - INFO = -7 + IF( .NOT.LQUERY ) THEN + IF( LWORK.LE.0 .OR. ( M.GT.0 .AND. LWORK.LT.MAX( 1, N ) ) ) + $ INFO = -7 END IF END IF * diff --git a/lapack-netlib/SRC/zgeqp3rk.f b/lapack-netlib/SRC/zgeqp3rk.f index 247a3c3797..01dcce0ded 100644 --- a/lapack-netlib/SRC/zgeqp3rk.f +++ b/lapack-netlib/SRC/zgeqp3rk.f @@ -428,7 +428,8 @@ *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. -*. LWORK >= N+NRHS-1 +*> LWORK >= 1, if MIN(M,N) = 0, and +*> LWORK >= N+NRHS-1, otherwise. *> For optimal performance LWORK >= NB*( N+NRHS+1 ), *> where NB is the optimal block size for ZGEQP3RK returned *> by ILAENV. Minimal block size MINNB=2. diff --git a/lapack-netlib/SRC/zgeqr.f b/lapack-netlib/SRC/zgeqr.f index 20a80d0835..7df9c2403d 100644 --- a/lapack-netlib/SRC/zgeqr.f +++ b/lapack-netlib/SRC/zgeqr.f @@ -99,7 +99,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1 or -2, then a workspace query is assumed. The routine *> only calculates the sizes of the T and WORK arrays, returns these *> values as the first entries of the T and WORK arrays, and no error @@ -168,6 +168,8 @@ *> *> \endverbatim *> +*> \ingroup geqr +*> * ===================================================================== SUBROUTINE ZGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ INFO ) @@ -188,7 +190,7 @@ SUBROUTINE ZGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, * .. * .. Local Scalars .. LOGICAL LQUERY, LMINWS, MINT, MINW - INTEGER MB, NB, MINTSZ, NBLCKS + INTEGER MB, NB, MINTSZ, NBLCKS, LWMIN, LWREQ * .. * .. External Functions .. LOGICAL LSAME @@ -244,8 +246,10 @@ SUBROUTINE ZGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, * * Determine if the workspace size satisfies minimal size * + LWMIN = MAX( 1, N ) + LWREQ = MAX( 1, N*NB ) LMINWS = .FALSE. - IF( ( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) .OR. LWORK.LT.NB*N ) + IF( ( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) .OR. LWORK.LT.LWREQ ) $ .AND. ( LWORK.GE.N ) .AND. ( TSIZE.GE.MINTSZ ) $ .AND. ( .NOT.LQUERY ) ) THEN IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) ) THEN @@ -253,7 +257,7 @@ SUBROUTINE ZGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, NB = 1 MB = M END IF - IF( LWORK.LT.NB*N ) THEN + IF( LWORK.LT.LWREQ ) THEN LMINWS = .TRUE. NB = 1 END IF @@ -268,7 +272,7 @@ SUBROUTINE ZGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, ELSE IF( TSIZE.LT.MAX( 1, NB*N*NBLCKS + 5 ) $ .AND. ( .NOT.LQUERY ) .AND. ( .NOT.LMINWS ) ) THEN INFO = -6 - ELSE IF( ( LWORK.LT.MAX( 1, N*NB ) ) .AND. ( .NOT.LQUERY ) + ELSE IF( ( LWORK.LT.LWREQ ) .AND. ( .NOT.LQUERY ) $ .AND. ( .NOT.LMINWS ) ) THEN INFO = -8 END IF @@ -282,9 +286,9 @@ SUBROUTINE ZGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, T( 2 ) = MB T( 3 ) = NB IF( MINW ) THEN - WORK( 1 ) = MAX( 1, N ) + WORK( 1 ) = LWMIN ELSE - WORK( 1 ) = MAX( 1, NB*N ) + WORK( 1 ) = LWREQ END IF END IF IF( INFO.NE.0 ) THEN @@ -309,7 +313,7 @@ SUBROUTINE ZGEQR( M, N, A, LDA, T, TSIZE, WORK, LWORK, $ LWORK, INFO ) END IF * - WORK( 1 ) = MAX( 1, NB*N ) + WORK( 1 ) = LWREQ * RETURN * diff --git a/lapack-netlib/SRC/zgeqrfp.f b/lapack-netlib/SRC/zgeqrfp.f index 73bcde6674..3562de36ec 100644 --- a/lapack-netlib/SRC/zgeqrfp.f +++ b/lapack-netlib/SRC/zgeqrfp.f @@ -97,7 +97,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,N). +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= N, otherwise. *> For optimum performance LWORK >= N*NB, where NB is *> the optimal blocksize. *> @@ -122,7 +123,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16GEcomputational +*> \ingroup geqrfp * *> \par Further Details: * ===================== @@ -162,8 +163,8 @@ SUBROUTINE ZGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * * .. Local Scalars .. LOGICAL LQUERY - INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB, - $ NBMIN, NX + INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKMIN, LWKOPT, + $ NB, NBMIN, NX * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGEQR2P, ZLARFB, ZLARFT @@ -181,8 +182,16 @@ SUBROUTINE ZGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * INFO = 0 NB = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 ) - LWKOPT = N*NB + K = MIN( M, N ) + IF( K.EQ.0 ) THEN + LWKMIN = 1 + LWKOPT = 1 + ELSE + LWKMIN = N + LWKOPT = N*NB + END IF WORK( 1 ) = LWKOPT +* LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 @@ -190,7 +199,7 @@ SUBROUTINE ZGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN @@ -202,7 +211,6 @@ SUBROUTINE ZGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * * Quick return if possible * - K = MIN( M, N ) IF( K.EQ.0 ) THEN WORK( 1 ) = 1 RETURN @@ -210,7 +218,7 @@ SUBROUTINE ZGEQRFP( M, N, A, LDA, TAU, WORK, LWORK, INFO ) * NBMIN = 2 NX = 0 - IWS = N + IWS = LWKMIN IF( NB.GT.1 .AND. NB.LT.K ) THEN * * Determine when to cross over from blocked to unblocked code. diff --git a/lapack-netlib/SRC/zgesvj.f b/lapack-netlib/SRC/zgesvj.f index 6cd2335f24..2be45d826e 100644 --- a/lapack-netlib/SRC/zgesvj.f +++ b/lapack-netlib/SRC/zgesvj.f @@ -200,23 +200,25 @@ *> \verbatim *> LDV is INTEGER *> The leading dimension of the array V, LDV >= 1. -*> If JOBV = 'V', then LDV >= max(1,N). -*> If JOBV = 'A', then LDV >= max(1,MV) . +*> If JOBV = 'V', then LDV >= MAX(1,N). +*> If JOBV = 'A', then LDV >= MAX(1,MV) . *> \endverbatim *> *> \param[in,out] CWORK *> \verbatim -*> CWORK is COMPLEX*16 array, dimension (max(1,LWORK)) +*> CWORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> Used as workspace. -*> If on entry LWORK = -1, then a workspace query is assumed and -*> no computation is done; CWORK(1) is set to the minial (and optimal) -*> length of CWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER. -*> Length of CWORK, LWORK >= M+N. +*> Length of CWORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= M+N, otherwise. +*> +*> If on entry LWORK = -1, then a workspace query is assumed and +*> no computation is done; CWORK(1) is set to the minial (and optimal) +*> length of CWORK. *> \endverbatim *> *> \param[in,out] RWORK @@ -247,15 +249,17 @@ *> RWORK(6) = the largest absolute value over all sines of the *> Jacobi rotation angles in the last sweep. It can be *> useful for a post festum analysis. -*> If on entry LRWORK = -1, then a workspace query is assumed and -*> no computation is done; RWORK(1) is set to the minial (and optimal) -*> length of RWORK. *> \endverbatim *> *> \param[in] LRWORK *> \verbatim *> LRWORK is INTEGER -*> Length of RWORK, LRWORK >= MAX(6,N). +*> Length of RWORK. +*> LRWORK >= 1, if MIN(M,N) = 0, and LRWORK >= MAX(6,N), otherwise. +*> +*> If on entry LRWORK = -1, then a workspace query is assumed and +*> no computation is done; RWORK(1) is set to the minial (and optimal) +*> length of RWORK. *> \endverbatim *> *> \param[out] INFO @@ -276,7 +280,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16GEcomputational +*> \ingroup gesvj * *> \par Further Details: * ===================== @@ -367,23 +371,25 @@ SUBROUTINE ZGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, * * .. Local Parameters .. DOUBLE PRECISION ZERO, HALF, ONE - PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0) - COMPLEX*16 CZERO, CONE - PARAMETER ( CZERO = (0.0D0, 0.0D0), CONE = (1.0D0, 0.0D0) ) - INTEGER NSWEEP - PARAMETER ( NSWEEP = 30 ) + PARAMETER ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0) + COMPLEX*16 CZERO, CONE + PARAMETER ( CZERO = (0.0D0, 0.0D0), CONE = (1.0D0, 0.0D0) ) + INTEGER NSWEEP + PARAMETER ( NSWEEP = 30 ) * .. * .. Local Scalars .. - COMPLEX*16 AAPQ, OMPQ - DOUBLE PRECISION AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG, - $ BIGTHETA, CS, CTOL, EPSLN, MXAAPQ, - $ MXSINJ, ROOTBIG, ROOTEPS, ROOTSFMIN, ROOTTOL, - $ SKL, SFMIN, SMALL, SN, T, TEMP1, THETA, THSIGN, TOL - INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1, - $ ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, N2, N34, - $ N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND - LOGICAL APPLV, GOSCALE, LOWER, LQUERY, LSVEC, NOSCALE, ROTOK, - $ RSVEC, UCTOL, UPPER + COMPLEX*16 AAPQ, OMPQ + DOUBLE PRECISION AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG, + $ BIGTHETA, CS, CTOL, EPSLN, MXAAPQ, + $ MXSINJ, ROOTBIG, ROOTEPS, ROOTSFMIN, ROOTTOL, + $ SKL, SFMIN, SMALL, SN, T, TEMP1, THETA, THSIGN, + $ TOL + INTEGER BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1, + $ ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, N2, N34, + $ N4, NBL, NOTROT, p, PSKIPPED, q, ROWSKIP, + $ SWBAND, MINMN, LWMIN, LRWMIN + LOGICAL APPLV, GOSCALE, LOWER, LQUERY, LSVEC, NOSCALE, + $ ROTOK, RSVEC, UCTOL, UPPER * .. * .. * .. Intrinsic Functions .. @@ -422,7 +428,16 @@ SUBROUTINE ZGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, UPPER = LSAME( JOBA, 'U' ) LOWER = LSAME( JOBA, 'L' ) * - LQUERY = ( LWORK .EQ. -1 ) .OR. ( LRWORK .EQ. -1 ) + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWMIN = 1 + LRWMIN = 1 + ELSE + LWMIN = M+N + LRWMIN = MAX( 6, N ) + END IF +* + LQUERY = ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) IF( .NOT.( UPPER .OR. LOWER .OR. LSAME( JOBA, 'G' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( LSVEC .OR. UCTOL .OR. LSAME( JOBU, 'N' ) ) ) THEN @@ -442,9 +457,9 @@ SUBROUTINE ZGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, INFO = -11 ELSE IF( UCTOL .AND. ( RWORK( 1 ).LE.ONE ) ) THEN INFO = -12 - ELSE IF( ( LWORK.LT.( M+N ) ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. ( .NOT.LQUERY ) ) THEN INFO = -13 - ELSE IF( ( LRWORK.LT.MAX( N, 6 ) ) .AND. ( .NOT.LQUERY ) ) THEN + ELSE IF( LRWORK.LT.LRWMIN .AND. ( .NOT.LQUERY ) ) THEN INFO = -15 ELSE INFO = 0 @@ -454,15 +469,15 @@ SUBROUTINE ZGESVJ( JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGESVJ', -INFO ) RETURN - ELSE IF ( LQUERY ) THEN - CWORK(1) = M + N - RWORK(1) = MAX( N, 6 ) + ELSE IF( LQUERY ) THEN + CWORK( 1 ) = LWMIN + RWORK( 1 ) = LRWMIN RETURN END IF * * #:) Quick return for void matrix * - IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )RETURN + IF( MINMN.EQ.0 ) RETURN * * Set numerical parameters * The stopping criterion for Jacobi rotations is diff --git a/lapack-netlib/SRC/zgetri.f b/lapack-netlib/SRC/zgetri.f index 41782841c9..f3806a77c2 100644 --- a/lapack-netlib/SRC/zgetri.f +++ b/lapack-netlib/SRC/zgetri.f @@ -107,7 +107,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16GEcomputational +*> \ingroup getri * * ===================================================================== SUBROUTINE ZGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO ) @@ -152,7 +152,7 @@ SUBROUTINE ZGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO ) * INFO = 0 NB = ILAENV( 1, 'ZGETRI', ' ', N, -1, -1, -1 ) - LWKOPT = N*NB + LWKOPT = MAX( 1, N*NB ) WORK( 1 ) = LWKOPT LQUERY = ( LWORK.EQ.-1 ) IF( N.LT.0 ) THEN diff --git a/lapack-netlib/SRC/zgetsls.f b/lapack-netlib/SRC/zgetsls.f index 17c6d5146d..26311c611b 100644 --- a/lapack-netlib/SRC/zgetsls.f +++ b/lapack-netlib/SRC/zgetsls.f @@ -127,7 +127,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> If LWORK = -1 or -2, then a workspace query is assumed. *> If LWORK = -1, the routine calculates optimal size of WORK for the *> optimal performance and returns this value in WORK(1). @@ -154,7 +154,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16GEsolve +*> \ingroup getsls * * ===================================================================== SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB, @@ -192,7 +192,7 @@ SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB, * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, ZLANGE - EXTERNAL LSAME, DLABAD, DLAMCH, ZLANGE + EXTERNAL LSAME, DLAMCH, ZLANGE * .. * .. External Subroutines .. EXTERNAL ZGEQR, ZGEMQR, ZLASCL, ZLASET, @@ -229,7 +229,10 @@ SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB, * * Determine the optimum and minimum LWORK * - IF( M.GE.N ) THEN + IF( MIN( M, N, NRHS ).EQ.0 ) THEN + WSIZEO = 1 + WSIZEM = 1 + ELSE IF( M.GE.N ) THEN CALL ZGEQR( M, N, A, LDA, TQ, -1, WORKQ, -1, INFO2 ) TSZO = INT( TQ( 1 ) ) LWO = INT( WORKQ( 1 ) ) @@ -297,7 +300,6 @@ SUBROUTINE ZGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB, * SMLNUM = DLAMCH( 'S' ) / DLAMCH( 'P' ) BIGNUM = ONE / SMLNUM - CALL DLABAD( SMLNUM, BIGNUM ) * * Scale A, B if max element outside range [SMLNUM,BIGNUM] * diff --git a/lapack-netlib/SRC/zgetsqrhrt.f b/lapack-netlib/SRC/zgetsqrhrt.f index 5f0167937e..e7ce993aa3 100644 --- a/lapack-netlib/SRC/zgetsqrhrt.f +++ b/lapack-netlib/SRC/zgetsqrhrt.f @@ -131,13 +131,15 @@ *> \param[in] LWORK *> \verbatim *> The dimension of the array WORK. -*> LWORK >= MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), +*> If MIN(M,N) = 0, LWORK >= 1, else +*> LWORK >= MAX( 1, LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ), *> where *> NUM_ALL_ROW_BLOCKS = CEIL((M-N)/(MB1-N)), *> NB1LOCAL = MIN(NB1,N). *> LWT = NUM_ALL_ROW_BLOCKS * N * NB1LOCAL, *> LW1 = NB1LOCAL * N, -*> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ), +*> LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ). +*> *> If LWORK = -1, then a workspace query is assumed. *> The routine only calculates the optimal size of the WORK *> array, returns this value as the first entry of the WORK @@ -160,7 +162,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup comlpex16OTHERcomputational +*> \ingroup getsqrhrt * *> \par Contributors: * ================== @@ -212,7 +214,7 @@ SUBROUTINE ZGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, * Test the input arguments * INFO = 0 - LQUERY = LWORK.EQ.-1 + LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 .OR. M.LT.N ) THEN @@ -225,7 +227,7 @@ SUBROUTINE ZGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, INFO = -5 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -7 - ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN + ELSE IF( LDT.LT.MAX( 1, MIN( NB2, N ) ) ) THEN INFO = -9 ELSE * @@ -263,8 +265,9 @@ SUBROUTINE ZGETSQRHRT( M, N, MB1, NB1, NB2, A, LDA, T, LDT, WORK, LW2 = NB1LOCAL * MAX( NB1LOCAL, ( N - NB1LOCAL ) ) * LWORKOPT = MAX( LWT + LW1, MAX( LWT+N*N+LW2, LWT+N*N+N ) ) + LWORKOPT = MAX( 1, LWORKOPT ) * - IF( ( LWORK.LT.MAX( 1, LWORKOPT ) ).AND.(.NOT.LQUERY) ) THEN + IF( LWORK.LT.LWORKOPT .AND. .NOT.LQUERY ) THEN INFO = -11 END IF * diff --git a/lapack-netlib/SRC/zgges3.f b/lapack-netlib/SRC/zgges3.f index 8b3e44f885..8235c2543a 100644 --- a/lapack-netlib/SRC/zgges3.f +++ b/lapack-netlib/SRC/zgges3.f @@ -215,7 +215,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= MAX(1,2*N) +*> For good performance, LWORK must generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -260,7 +261,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16GEeigen +*> \ingroup gges3 * * ===================================================================== SUBROUTINE ZGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, @@ -300,7 +301,8 @@ SUBROUTINE ZGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, LOGICAL CURSL, ILASCL, ILBSCL, ILVSL, ILVSR, LASTSL, $ LQUERY, WANTST INTEGER I, ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, - $ ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKOPT + $ ILO, IRIGHT, IROWS, IRWRK, ITAU, IWRK, LWKOPT, + $ LWKMIN DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, PVSL, $ PVSR, SMLNUM * .. @@ -309,9 +311,8 @@ SUBROUTINE ZGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, DOUBLE PRECISION DIF( 2 ) * .. * .. External Subroutines .. - EXTERNAL DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHD3, - $ ZLAQZ0, ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR, - $ ZUNMQR + EXTERNAL XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHD3, ZLAQZ0, + $ ZLACPY, ZLASCL, ZLASET, ZTGSEN, ZUNGQR, ZUNMQR * .. * .. External Functions .. LOGICAL LSAME @@ -353,6 +354,8 @@ SUBROUTINE ZGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) + LWKMIN = MAX( 1, 2*N ) +* IF( IJOBVL.LE.0 ) THEN INFO = -1 ELSE IF( IJOBVR.LE.0 ) THEN @@ -369,7 +372,7 @@ SUBROUTINE ZGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, INFO = -14 ELSE IF( LDVSR.LT.1 .OR. ( ILVSR .AND. LDVSR.LT.N ) ) THEN INFO = -16 - ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -18 END IF * @@ -377,28 +380,32 @@ SUBROUTINE ZGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, * IF( INFO.EQ.0 ) THEN CALL ZGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR ) - LWKOPT = MAX( 1, N + INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKMIN, N + INT( WORK( 1 ) ) ) CALL ZUNMQR( 'L', 'C', N, N, N, B, LDB, WORK, A, LDA, WORK, $ -1, IERR ) - LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKOPT, N + INT( WORK( 1 ) ) ) IF( ILVSL ) THEN CALL ZUNGQR( N, N, N, VSL, LDVSL, WORK, WORK, -1, IERR ) LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) ) END IF CALL ZGGHD3( JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, VSL, $ LDVSL, VSR, LDVSR, WORK, -1, IERR ) - LWKOPT = MAX( LWKOPT, N + INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKOPT, N + INT( WORK( 1 ) ) ) CALL ZLAQZ0( 'S', JOBVSL, JOBVSR, N, 1, N, A, LDA, B, LDB, $ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK, -1, $ RWORK, 0, IERR ) - LWKOPT = MAX( LWKOPT, INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKOPT, INT( WORK( 1 ) ) ) IF( WANTST ) THEN CALL ZTGSEN( 0, ILVSL, ILVSR, BWORK, N, A, LDA, B, LDB, $ ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, SDIM, $ PVSL, PVSR, DIF, WORK, -1, IDUM, 1, IERR ) - LWKOPT = MAX( LWKOPT, INT ( WORK( 1 ) ) ) + LWKOPT = MAX( LWKOPT, INT( WORK( 1 ) ) ) + END IF + IF( N.EQ.0 ) THEN + WORK( 1 ) = 1 + ELSE + WORK( 1 ) = DCMPLX( LWKOPT ) END IF - WORK( 1 ) = DCMPLX( LWKOPT ) END IF * IF( INFO.NE.0 ) THEN @@ -420,7 +427,6 @@ SUBROUTINE ZGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, EPS = DLAMCH( 'P' ) SMLNUM = DLAMCH( 'S' ) BIGNUM = ONE / SMLNUM - CALL DLABAD( SMLNUM, BIGNUM ) SMLNUM = SQRT( SMLNUM ) / EPS BIGNUM = ONE / SMLNUM * diff --git a/lapack-netlib/SRC/zggev3.f b/lapack-netlib/SRC/zggev3.f index 2d6c745824..0cc0734708 100644 --- a/lapack-netlib/SRC/zggev3.f +++ b/lapack-netlib/SRC/zggev3.f @@ -174,7 +174,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= MAX(1,2*N). +*> For good performance, LWORK must generally be larger. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -208,7 +209,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16GEeigen +*> \ingroup ggev3 * * ===================================================================== SUBROUTINE ZGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, @@ -243,7 +244,7 @@ SUBROUTINE ZGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, CHARACTER CHTEMP INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO, $ IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR, - $ LWKOPT + $ LWKMIN, LWKOPT DOUBLE PRECISION ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, $ SMLNUM, TEMP COMPLEX*16 X @@ -252,9 +253,8 @@ SUBROUTINE ZGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, LOGICAL LDUMMA( 1 ) * .. * .. External Subroutines .. - EXTERNAL DLABAD, XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHD3, - $ ZLAQZ0, ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR, - $ ZUNMQR + EXTERNAL XERBLA, ZGEQRF, ZGGBAK, ZGGBAL, ZGGHD3, ZLAQZ0, + $ ZLACPY, ZLASCL, ZLASET, ZTGEVC, ZUNGQR, ZUNMQR * .. * .. External Functions .. LOGICAL LSAME @@ -301,6 +301,7 @@ SUBROUTINE ZGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) + LWKMIN = MAX( 1, 2*N ) IF( IJOBVL.LE.0 ) THEN INFO = -1 ELSE IF( IJOBVR.LE.0 ) THEN @@ -315,7 +316,7 @@ SUBROUTINE ZGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, INFO = -11 ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN INFO = -13 - ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -15 END IF * @@ -323,7 +324,7 @@ SUBROUTINE ZGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, * IF( INFO.EQ.0 ) THEN CALL ZGEQRF( N, N, B, LDB, WORK, WORK, -1, IERR ) - LWKOPT = MAX( 1, N+INT( WORK( 1 ) ) ) + LWKOPT = MAX( LWKMIN, N+INT( WORK( 1 ) ) ) CALL ZUNMQR( 'L', 'C', N, N, N, B, LDB, WORK, A, LDA, WORK, $ -1, IERR ) LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) ) @@ -348,7 +349,11 @@ SUBROUTINE ZGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, $ RWORK, 0, IERR ) LWKOPT = MAX( LWKOPT, N+INT( WORK( 1 ) ) ) END IF - WORK( 1 ) = DCMPLX( LWKOPT ) + IF( N.EQ.0 ) THEN + WORK( 1 ) = 1 + ELSE + WORK( 1 ) = DCMPLX( LWKOPT ) + END IF END IF * IF( INFO.NE.0 ) THEN @@ -368,7 +373,6 @@ SUBROUTINE ZGGEV3( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, EPS = DLAMCH( 'E' )*DLAMCH( 'B' ) SMLNUM = DLAMCH( 'S' ) BIGNUM = ONE / SMLNUM - CALL DLABAD( SMLNUM, BIGNUM ) SMLNUM = SQRT( SMLNUM ) / EPS BIGNUM = ONE / SMLNUM * diff --git a/lapack-netlib/SRC/zgghd3.f b/lapack-netlib/SRC/zgghd3.f index b29cdc70a3..08343688de 100644 --- a/lapack-netlib/SRC/zgghd3.f +++ b/lapack-netlib/SRC/zgghd3.f @@ -176,14 +176,14 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX*16 array, dimension (LWORK) +*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of the array WORK. LWORK >= 1. +*> The length of the array WORK. LWORK >= 1. *> For optimum performance LWORK >= 6*N*NB, where NB is the *> optimal blocksize. *> @@ -208,7 +208,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16OTHERcomputational +*> \ingroup gghd3 * *> \par Further Details: * ===================== @@ -275,7 +275,12 @@ SUBROUTINE ZGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, * INFO = 0 NB = ILAENV( 1, 'ZGGHD3', ' ', N, ILO, IHI, -1 ) - LWKOPT = MAX( 6*N*NB, 1 ) + NH = IHI - ILO + 1 + IF( NH.LE.1 ) THEN + LWKOPT = 1 + ELSE + LWKOPT = 6*N*NB + END IF WORK( 1 ) = DCMPLX( LWKOPT ) INITQ = LSAME( COMPQ, 'I' ) WANTQ = INITQ .OR. LSAME( COMPQ, 'V' ) @@ -325,7 +330,6 @@ SUBROUTINE ZGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, * * Quick return if possible * - NH = IHI - ILO + 1 IF( NH.LE.1 ) THEN WORK( 1 ) = CONE RETURN @@ -883,6 +887,7 @@ SUBROUTINE ZGGHD3( COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, IF ( JCOL.LT.IHI ) $ CALL ZGGHRD( COMPQ2, COMPZ2, N, JCOL, IHI, A, LDA, B, LDB, Q, $ LDQ, Z, LDZ, IERR ) +* WORK( 1 ) = DCMPLX( LWKOPT ) * RETURN diff --git a/lapack-netlib/SRC/zggqrf.f b/lapack-netlib/SRC/zggqrf.f index 0388b08743..d8636d6635 100644 --- a/lapack-netlib/SRC/zggqrf.f +++ b/lapack-netlib/SRC/zggqrf.f @@ -173,7 +173,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16OTHERcomputational +*> \ingroup ggqrf * *> \par Further Details: * ===================== @@ -250,7 +250,7 @@ SUBROUTINE ZGGQRF( N, M, P, A, LDA, TAUA, B, LDB, TAUB, WORK, NB2 = ILAENV( 1, 'ZGERQF', ' ', N, P, -1, -1 ) NB3 = ILAENV( 1, 'ZUNMQR', ' ', N, M, P, -1 ) NB = MAX( NB1, NB2, NB3 ) - LWKOPT = MAX( N, M, P )*NB + LWKOPT = MAX( 1, MAX( N, M, P )*NB ) WORK( 1 ) = LWKOPT LQUERY = ( LWORK.EQ.-1 ) IF( N.LT.0 ) THEN diff --git a/lapack-netlib/SRC/zggrqf.f b/lapack-netlib/SRC/zggrqf.f index be912c7726..69c14af245 100644 --- a/lapack-netlib/SRC/zggrqf.f +++ b/lapack-netlib/SRC/zggrqf.f @@ -172,7 +172,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16OTHERcomputational +*> \ingroup ggrqf * *> \par Further Details: * ===================== @@ -249,7 +249,7 @@ SUBROUTINE ZGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, NB2 = ILAENV( 1, 'ZGEQRF', ' ', P, N, -1, -1 ) NB3 = ILAENV( 1, 'ZUNMRQ', ' ', M, N, P, -1 ) NB = MAX( NB1, NB2, NB3 ) - LWKOPT = MAX( N, M, P )*NB + LWKOPT = MAX( 1, MAX( N, M, P )*NB ) WORK( 1 ) = LWKOPT LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN diff --git a/lapack-netlib/SRC/zggsvd3.f b/lapack-netlib/SRC/zggsvd3.f index 71257a7c07..40624f5beb 100644 --- a/lapack-netlib/SRC/zggsvd3.f +++ b/lapack-netlib/SRC/zggsvd3.f @@ -277,7 +277,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -332,7 +332,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16GEsing +*> \ingroup ggsvd3 * *> \par Contributors: * ================== diff --git a/lapack-netlib/SRC/zggsvp3.f b/lapack-netlib/SRC/zggsvp3.f index f39ccdad31..7b465aaeea 100644 --- a/lapack-netlib/SRC/zggsvp3.f +++ b/lapack-netlib/SRC/zggsvp3.f @@ -233,7 +233,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. LWORK >= 1. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -256,7 +256,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16OTHERcomputational +*> \ingroup ggsvp3 * *> \par Further Details: * ===================== diff --git a/lapack-netlib/SRC/zheevd.f b/lapack-netlib/SRC/zheevd.f index ba52f9e723..8e86b9e88a 100644 --- a/lapack-netlib/SRC/zheevd.f +++ b/lapack-netlib/SRC/zheevd.f @@ -116,8 +116,7 @@ *> *> \param[out] RWORK *> \verbatim -*> RWORK is DOUBLE PRECISION array, -*> dimension (LRWORK) +*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. *> \endverbatim *> @@ -180,7 +179,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16HEeigen +*> \ingroup heevd * *> \par Further Details: * ===================== diff --git a/lapack-netlib/SRC/zheevr.f b/lapack-netlib/SRC/zheevr.f index 1452e04a33..fe6e1a85f7 100644 --- a/lapack-netlib/SRC/zheevr.f +++ b/lapack-netlib/SRC/zheevr.f @@ -272,7 +272,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of the array WORK. LWORK >= max(1,2*N). +*> The length of the array WORK. +*> If N <= 1, LWORK >= 1, else LWORK >= 2*N. *> For optimal efficiency, LWORK >= (NB+1)*N, *> where NB is the max of the blocksize for ZHETRD and for *> ZUNMTR as returned by ILAENV. @@ -294,7 +295,8 @@ *> \param[in] LRWORK *> \verbatim *> LRWORK is INTEGER -*> The length of the array RWORK. LRWORK >= max(1,24*N). +*> The length of the array RWORK. +*> If N <= 1, LRWORK >= 1, else LRWORK >= 24*N. *> *> If LRWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal sizes of the WORK, RWORK @@ -313,7 +315,8 @@ *> \param[in] LIWORK *> \verbatim *> LIWORK is INTEGER -*> The dimension of the array IWORK. LIWORK >= max(1,10*N). +*> The dimension of the array IWORK. +*> If N <= 1, LIWORK >= 1, else LIWORK >= 10*N. *> *> If LIWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal sizes of the WORK, RWORK @@ -338,7 +341,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16HEeigen +*> \ingroup heevr * *> \par Contributors: * ================== @@ -417,9 +420,15 @@ SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LRWORK.EQ.-1 ) .OR. $ ( LIWORK.EQ.-1 ) ) * - LRWMIN = MAX( 1, 24*N ) - LIWMIN = MAX( 1, 10*N ) - LWMIN = MAX( 1, 2*N ) + IF( N.LE.1 ) THEN + LWMIN = 1 + LRWMIN = 1 + LIWMIN = 1 + ELSE + LWMIN = 2*N + LRWMIN = 24*N + LIWMIN = 10*N + END IF * INFO = 0 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN @@ -454,7 +463,7 @@ SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, NB = ILAENV( 1, 'ZHETRD', UPLO, N, -1, -1, -1 ) NB = MAX( NB, ILAENV( 1, 'ZUNMTR', UPLO, N, -1, -1, -1 ) ) LWKOPT = MAX( ( NB+1 )*N, LWMIN ) - WORK( 1 ) = LWKOPT + WORK( 1 ) = LWKOPT RWORK( 1 ) = LRWMIN IWORK( 1 ) = LIWMIN * @@ -483,7 +492,7 @@ SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, END IF * IF( N.EQ.1 ) THEN - WORK( 1 ) = 2 + WORK( 1 ) = 1 IF( ALLEIG .OR. INDEIG ) THEN M = 1 W( 1 ) = DBLE( A( 1, 1 ) ) @@ -710,7 +719,7 @@ SUBROUTINE ZHEEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, * * Set WORK(1) to optimal workspace size. * - WORK( 1 ) = LWKOPT + WORK( 1 ) = LWKOPT RWORK( 1 ) = LRWMIN IWORK( 1 ) = LIWMIN * diff --git a/lapack-netlib/SRC/zheevr_2stage.f b/lapack-netlib/SRC/zheevr_2stage.f index 5c576e633b..b1cc7175fa 100644 --- a/lapack-netlib/SRC/zheevr_2stage.f +++ b/lapack-netlib/SRC/zheevr_2stage.f @@ -265,7 +265,7 @@ *> indicating the nonzero elements in Z. The i-th eigenvector *> is nonzero only in elements ISUPPZ( 2*i-1 ) through *> ISUPPZ( 2*i ). This is an output of ZSTEMR (tridiagonal -*> matrix). The support of the eigenvectors of A is typically +*> matrix). The support of the eigenvectors of A is typically *> 1:N because of the unitary transformations applied by ZUNMTR. *> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 *> \endverbatim @@ -279,12 +279,13 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. +*> The dimension of the array WORK. +*> If N <= 1, LWORK must be at least 1. *> If JOBZ = 'N' and N > 1, LWORK must be queried. *> LWORK = MAX(1, 26*N, dimension) where *> dimension = max(stage1,stage2) + (KD+1)*N + N -*> = N*KD + N*max(KD+1,FACTOPTNB) -*> + max(2*KD*KD, KD*NTHREADS) +*> = N*KD + N*max(KD+1,FACTOPTNB) +*> + max(2*KD*KD, KD*NTHREADS) *> + (KD+1)*N + N *> where KD is the blocking size of the reduction, *> FACTOPTNB is the blocking used by the QR or LQ @@ -310,7 +311,8 @@ *> \param[in] LRWORK *> \verbatim *> LRWORK is INTEGER -*> The length of the array RWORK. LRWORK >= max(1,24*N). +*> The length of the array RWORK. +*> If N <= 1, LRWORK >= 1, else LRWORK >= 24*N. *> *> If LRWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal sizes of the WORK, RWORK @@ -329,7 +331,8 @@ *> \param[in] LIWORK *> \verbatim *> LIWORK is INTEGER -*> The dimension of the array IWORK. LIWORK >= max(1,10*N). +*> The dimension of the array IWORK. +*> If N <= 1, LIWORK >= 1, else LIWORK >= 10*N. *> *> If LIWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal sizes of the WORK, RWORK @@ -354,7 +357,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16HEeigen +*> \ingroup heevr_2stage * *> \par Contributors: * ================== @@ -382,7 +385,7 @@ *> http://doi.acm.org/10.1145/2063384.2063394 *> *> A. Haidar, J. Kurzak, P. Luszczek, 2013. -*> An improved parallel singular value algorithm and its implementation +*> An improved parallel singular value algorithm and its implementation *> for multicore hardware, In Proceedings of 2013 International Conference *> for High Performance Computing, Networking, Storage and Analysis (SC '13). *> Denver, Colorado, USA, 2013. @@ -390,11 +393,11 @@ *> http://doi.acm.org/10.1145/2503210.2503292 *> *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. -*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure +*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure *> calculations based on fine-grained memory aware tasks. *> International Journal of High Performance Computing Applications. *> Volume 28 Issue 2, Pages 196-209, May 2014. -*> http://hpc.sagepub.com/content/28/2/196 +*> http://hpc.sagepub.com/content/28/2/196 *> *> \endverbatim * @@ -472,9 +475,16 @@ SUBROUTINE ZHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IB = ILAENV2STAGE( 2, 'ZHETRD_2STAGE', JOBZ, N, KD, -1, -1 ) LHTRD = ILAENV2STAGE( 3, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1 ) LWTRD = ILAENV2STAGE( 4, 'ZHETRD_2STAGE', JOBZ, N, KD, IB, -1 ) - LWMIN = N + LHTRD + LWTRD - LRWMIN = MAX( 1, 24*N ) - LIWMIN = MAX( 1, 10*N ) +* + IF( N.LE.1 ) THEN + LWMIN = 1 + LRWMIN = 1 + LIWMIN = 1 + ELSE + LWMIN = N + LHTRD + LWTRD + LRWMIN = 24*N + LIWMIN = 10*N + END IF * INFO = 0 IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN @@ -535,7 +545,7 @@ SUBROUTINE ZHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, END IF * IF( N.EQ.1 ) THEN - WORK( 1 ) = 2 + WORK( 1 ) = 1 IF( ALLEIG .OR. INDEIG ) THEN M = 1 W( 1 ) = DBLE( A( 1, 1 ) ) @@ -643,9 +653,9 @@ SUBROUTINE ZHEEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, * * Call ZHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form. * - CALL ZHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, RWORK( INDRD ), + CALL ZHETRD_2STAGE( JOBZ, UPLO, N, A, LDA, RWORK( INDRD ), $ RWORK( INDRE ), WORK( INDTAU ), - $ WORK( INDHOUS ), LHTRD, + $ WORK( INDHOUS ), LHTRD, $ WORK( INDWK ), LLWORK, IINFO ) * * If all eigenvalues are desired diff --git a/lapack-netlib/SRC/zhesv_aa.f b/lapack-netlib/SRC/zhesv_aa.f index df8498c7a5..b3d4b37256 100644 --- a/lapack-netlib/SRC/zhesv_aa.f +++ b/lapack-netlib/SRC/zhesv_aa.f @@ -128,7 +128,7 @@ *> LWORK is INTEGER *> The length of WORK. LWORK >= MAX(1,2*N,3*N-2), and for best *> performance LWORK >= max(1,N*NB), where NB is the optimal -*> blocksize for ZHETRF. +*> blocksize for ZHETRF_AA. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -154,7 +154,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16HEsolve +*> \ingroup hesv_aa * * ===================================================================== SUBROUTINE ZHESV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, @@ -177,7 +177,7 @@ SUBROUTINE ZHESV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, * * .. Local Scalars .. LOGICAL LQUERY - INTEGER LWKOPT, LWKOPT_HETRF, LWKOPT_HETRS + INTEGER LWKMIN, LWKOPT, LWKOPT_HETRF, LWKOPT_HETRS * .. * .. External Functions .. LOGICAL LSAME @@ -196,6 +196,7 @@ SUBROUTINE ZHESV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) + LWKMIN = MAX( 1, 2*N, 3*N-2 ) IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN @@ -206,17 +207,17 @@ SUBROUTINE ZHESV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 - ELSE IF( LWORK.LT.MAX(2*N, 3*N-2) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -10 END IF * IF( INFO.EQ.0 ) THEN CALL ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, -1, INFO ) - LWKOPT_HETRF = INT( WORK(1) ) + LWKOPT_HETRF = INT( WORK( 1 ) ) CALL ZHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, $ -1, INFO ) - LWKOPT_HETRS = INT( WORK(1) ) - LWKOPT = MAX( LWKOPT_HETRF, LWKOPT_HETRS ) + LWKOPT_HETRS = INT( WORK( 1 ) ) + LWKOPT = MAX( LWKMIN, LWKOPT_HETRF, LWKOPT_HETRS ) WORK( 1 ) = LWKOPT END IF * diff --git a/lapack-netlib/SRC/zhesv_aa_2stage.f b/lapack-netlib/SRC/zhesv_aa_2stage.f index 79c01c546e..c503b5554d 100644 --- a/lapack-netlib/SRC/zhesv_aa_2stage.f +++ b/lapack-netlib/SRC/zhesv_aa_2stage.f @@ -100,14 +100,14 @@ *> *> \param[out] TB *> \verbatim -*> TB is COMPLEX*16 array, dimension (LTB) +*> TB is COMPLEX*16 array, dimension (MAX(1,LTB)). *> On exit, details of the LU factorization of the band matrix. *> \endverbatim *> *> \param[in] LTB *> \verbatim *> LTB is INTEGER -*> The size of the array TB. LTB >= 4*N, internally +*> The size of the array TB. LTB >= MAX(1,4*N), internally *> used to select NB such that LTB >= (3*NB+1)*N. *> *> If LTB = -1, then a workspace query is assumed; the @@ -147,14 +147,15 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX*16 workspace of size LWORK +*> WORK is COMPLEX*16 workspace of size (MAX(1,LWORK)). +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The size of WORK. LWORK >= N, internally used to select NB -*> such that LWORK >= N*NB. +*> The size of WORK. LWORK >= MAX(1,N), internally used to +*> select NB such that LWORK >= N*NB. *> *> If LWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal size of the WORK array, @@ -178,7 +179,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16HEsolve +*> \ingroup hesv_aa_2stage * * ===================================================================== SUBROUTINE ZHESV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, @@ -208,7 +209,7 @@ SUBROUTINE ZHESV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, * * .. Local Scalars .. LOGICAL UPPER, TQUERY, WQUERY - INTEGER LWKOPT + INTEGER LWKOPT, LWKMIN * .. * .. External Functions .. LOGICAL LSAME @@ -229,6 +230,7 @@ SUBROUTINE ZHESV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, UPPER = LSAME( UPLO, 'U' ) WQUERY = ( LWORK.EQ.-1 ) TQUERY = ( LTB.EQ.-1 ) + LWKMIN = MAX( 1, N ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN @@ -237,18 +239,19 @@ SUBROUTINE ZHESV_AA_2STAGE( UPLO, N, NRHS, A, LDA, TB, LTB, INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 - ELSE IF( LTB.LT.( 4*N ) .AND. .NOT.TQUERY ) THEN + ELSE IF( LTB.LT.MAX( 1, 4*N ) .AND. .NOT.TQUERY ) THEN INFO = -7 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -11 - ELSE IF( LWORK.LT.N .AND. .NOT.WQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.WQUERY ) THEN INFO = -13 END IF * IF( INFO.EQ.0 ) THEN CALL ZHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, -1, IPIV, $ IPIV2, WORK, -1, INFO ) - LWKOPT = INT( WORK(1) ) + LWKOPT = MAX( LWKMIN, INT( WORK( 1 ) ) ) + WORK( 1 ) = LWKOPT END IF * IF( INFO.NE.0 ) THEN diff --git a/lapack-netlib/SRC/zhesvx.f b/lapack-netlib/SRC/zhesvx.f index 485c81df63..64aa166749 100644 --- a/lapack-netlib/SRC/zhesvx.f +++ b/lapack-netlib/SRC/zhesvx.f @@ -234,8 +234,8 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >= max(1,2*N), and for best -*> performance, when FACT = 'N', LWORK >= max(1,2*N,N*NB), where +*> The length of WORK. LWORK >= MAX(1,2*N), and for best +*> performance, when FACT = 'N', LWORK >= MAX(1,2*N,N*NB), where *> NB is the optimal blocksize for ZHETRF. *> *> If LWORK = -1, then a workspace query is assumed; the routine @@ -276,7 +276,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16HEsolve +*> \ingroup hesvx * * ===================================================================== SUBROUTINE ZHESVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, @@ -307,7 +307,7 @@ SUBROUTINE ZHESVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, * .. * .. Local Scalars .. LOGICAL LQUERY, NOFACT - INTEGER LWKOPT, NB + INTEGER LWKOPT, LWKMIN, NB DOUBLE PRECISION ANORM * .. * .. External Functions .. @@ -329,6 +329,7 @@ SUBROUTINE ZHESVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, INFO = 0 NOFACT = LSAME( FACT, 'N' ) LQUERY = ( LWORK.EQ.-1 ) + LWKMIN = MAX( 1, 2*N ) IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN INFO = -1 ELSE IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) @@ -346,12 +347,12 @@ SUBROUTINE ZHESVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, INFO = -11 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -13 - ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -18 END IF * IF( INFO.EQ.0 ) THEN - LWKOPT = MAX( 1, 2*N ) + LWKOPT = LWKMIN IF( NOFACT ) THEN NB = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 ) LWKOPT = MAX( LWKOPT, N*NB ) diff --git a/lapack-netlib/SRC/zhetrd_2stage.f b/lapack-netlib/SRC/zhetrd_2stage.f index b9d2f0eb19..ab444894b9 100644 --- a/lapack-netlib/SRC/zhetrd_2stage.f +++ b/lapack-netlib/SRC/zhetrd_2stage.f @@ -4,23 +4,23 @@ * * =========== DOCUMENTATION =========== * -* Online html documentation available at -* http://www.netlib.org/lapack/explore-html/ +* Online html documentation available at +* http://www.netlib.org/lapack/explore-html/ * *> \htmlonly -*> Download ZHETRD_2STAGE + dependencies -*> -*> [TGZ] -*> -*> [ZIP] -*> +*> Download ZHETRD_2STAGE + dependencies +*> +*> [TGZ] +*> +*> [ZIP] +*> *> [TXT] -*> \endhtmlonly +*> \endhtmlonly * * Definition: * =========== * -* SUBROUTINE ZHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, +* SUBROUTINE ZHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, * HOUS2, LHOUS2, WORK, LWORK, INFO ) * * IMPLICIT NONE @@ -34,7 +34,7 @@ * COMPLEX*16 A( LDA, * ), TAU( * ), * HOUS2( * ), WORK( * ) * .. -* +* * *> \par Purpose: * ============= @@ -52,11 +52,11 @@ *> \param[in] VECT *> \verbatim *> VECT is CHARACTER*1 -*> = 'N': No need for the Housholder representation, +*> = 'N': No need for the Housholder representation, *> in particular for the second stage (Band to *> tridiagonal) and thus LHOUS2 is of size max(1, 4*N); -*> = 'V': the Householder representation is needed to -*> either generate Q1 Q2 or to apply Q1 Q2, +*> = 'V': the Householder representation is needed to +*> either generate Q1 Q2 or to apply Q1 Q2, *> then LHOUS2 is to be queried and computed. *> (NOT AVAILABLE IN THIS RELEASE). *> \endverbatim @@ -86,7 +86,7 @@ *> triangular part of A is not referenced. *> On exit, if UPLO = 'U', the band superdiagonal *> of A are overwritten by the corresponding elements of the -*> internal band-diagonal matrix AB, and the elements above +*> internal band-diagonal matrix AB, and the elements above *> the KD superdiagonal, with the array TAU, represent the unitary *> matrix Q1 as a product of elementary reflectors; if UPLO *> = 'L', the diagonal and band subdiagonal of A are over- @@ -117,13 +117,13 @@ *> \param[out] TAU *> \verbatim *> TAU is COMPLEX*16 array, dimension (N-KD) -*> The scalar factors of the elementary reflectors of +*> The scalar factors of the elementary reflectors of *> the first stage (see Further Details). *> \endverbatim *> *> \param[out] HOUS2 *> \verbatim -*> HOUS2 is COMPLEX*16 array, dimension (LHOUS2) +*> HOUS2 is COMPLEX*16 array, dimension (MAX(1,LHOUS2)) *> Stores the Householder representation of the stage2 *> band to tridiagonal. *> \endverbatim @@ -132,6 +132,8 @@ *> \verbatim *> LHOUS2 is INTEGER *> The dimension of the array HOUS2. +*> LHOUS2 >= 1. +*> *> If LWORK = -1, or LHOUS2 = -1, *> then a query is assumed; the routine *> only calculates the optimal size of the HOUS2 array, returns @@ -143,23 +145,26 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX*16 array, dimension (LWORK) +*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK = MAX(1, dimension) -*> If LWORK = -1, or LHOUS2=-1, +*> The dimension of the array WORK. +*> If N = 0, LWORK >= 1, else LWORK = MAX(1, dimension). +*> +*> If LWORK = -1, or LHOUS2 = -1, *> then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> LWORK = MAX(1, dimension) where *> dimension = max(stage1,stage2) + (KD+1)*N -*> = N*KD + N*max(KD+1,FACTOPTNB) -*> + max(2*KD*KD, KD*NTHREADS) -*> + (KD+1)*N +*> = N*KD + N*max(KD+1,FACTOPTNB) +*> + max(2*KD*KD, KD*NTHREADS) +*> + (KD+1)*N *> where KD is the blocking size of the reduction, *> FACTOPTNB is the blocking used by the QR or LQ *> algorithm, usually FACTOPTNB=128 is a good choice @@ -177,12 +182,12 @@ * Authors: * ======== * -*> \author Univ. of Tennessee -*> \author Univ. of California Berkeley -*> \author Univ. of Colorado Denver -*> \author NAG Ltd. +*> \author Univ. of Tennessee +*> \author Univ. of California Berkeley +*> \author Univ. of Colorado Denver +*> \author NAG Ltd. * -*> \ingroup complex16HEcomputational +*> \ingroup hetrd_2stage * *> \par Further Details: * ===================== @@ -202,7 +207,7 @@ *> http://doi.acm.org/10.1145/2063384.2063394 *> *> A. Haidar, J. Kurzak, P. Luszczek, 2013. -*> An improved parallel singular value algorithm and its implementation +*> An improved parallel singular value algorithm and its implementation *> for multicore hardware, In Proceedings of 2013 International Conference *> for High Performance Computing, Networking, Storage and Analysis (SC '13). *> Denver, Colorado, USA, 2013. @@ -210,16 +215,16 @@ *> http://doi.acm.org/10.1145/2503210.2503292 *> *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. -*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure +*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure *> calculations based on fine-grained memory aware tasks. *> International Journal of High Performance Computing Applications. *> Volume 28 Issue 2, Pages 196-209, May 2014. -*> http://hpc.sagepub.com/content/28/2/196 +*> http://hpc.sagepub.com/content/28/2/196 *> *> \endverbatim *> * ===================================================================== - SUBROUTINE ZHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, + SUBROUTINE ZHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, $ HOUS2, LHOUS2, WORK, LWORK, INFO ) * IMPLICIT NONE @@ -265,10 +270,13 @@ SUBROUTINE ZHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, * KD = ILAENV2STAGE( 1, 'ZHETRD_2STAGE', VECT, N, -1, -1, -1 ) IB = ILAENV2STAGE( 2, 'ZHETRD_2STAGE', VECT, N, KD, -1, -1 ) - LHMIN = ILAENV2STAGE( 3, 'ZHETRD_2STAGE', VECT, N, KD, IB, -1 ) - LWMIN = ILAENV2STAGE( 4, 'ZHETRD_2STAGE', VECT, N, KD, IB, -1 ) -* WRITE(*,*),'ZHETRD_2STAGE N KD UPLO LHMIN LWMIN ',N, KD, UPLO, -* $ LHMIN, LWMIN + IF( N.EQ.0 ) THEN + LHMIN = 1 + LWMIN = 1 + ELSE + LHMIN = ILAENV2STAGE( 3, 'ZHETRD_2STAGE', VECT, N, KD, IB, -1 ) + LWMIN = ILAENV2STAGE( 4, 'ZHETRD_2STAGE', VECT, N, KD, IB, -1 ) + END IF * IF( .NOT.LSAME( VECT, 'N' ) ) THEN INFO = -1 @@ -309,14 +317,14 @@ SUBROUTINE ZHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, LWRK = LWORK-LDAB*N ABPOS = 1 WPOS = ABPOS + LDAB*N - CALL ZHETRD_HE2HB( UPLO, N, KD, A, LDA, WORK( ABPOS ), LDAB, + CALL ZHETRD_HE2HB( UPLO, N, KD, A, LDA, WORK( ABPOS ), LDAB, $ TAU, WORK( WPOS ), LWRK, INFO ) IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZHETRD_HE2HB', -INFO ) RETURN END IF - CALL ZHETRD_HB2ST( 'Y', VECT, UPLO, N, KD, - $ WORK( ABPOS ), LDAB, D, E, + CALL ZHETRD_HB2ST( 'Y', VECT, UPLO, N, KD, + $ WORK( ABPOS ), LDAB, D, E, $ HOUS2, LHOUS2, WORK( WPOS ), LWRK, INFO ) IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZHETRD_HB2ST', -INFO ) @@ -324,7 +332,6 @@ SUBROUTINE ZHETRD_2STAGE( VECT, UPLO, N, A, LDA, D, E, TAU, END IF * * - HOUS2( 1 ) = LHMIN WORK( 1 ) = LWMIN RETURN * diff --git a/lapack-netlib/SRC/zhetrd_hb2st.F b/lapack-netlib/SRC/zhetrd_hb2st.F index 1d39ac9428..247497ab67 100644 --- a/lapack-netlib/SRC/zhetrd_hb2st.F +++ b/lapack-netlib/SRC/zhetrd_hb2st.F @@ -18,7 +18,7 @@ * Definition: * =========== * -* SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, +* SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * D, E, HOUS, LHOUS, WORK, LWORK, INFO ) * * #if defined(_OPENMP) @@ -53,12 +53,12 @@ *> \param[in] STAGE1 *> \verbatim *> STAGE1 is CHARACTER*1 -*> = 'N': "No": to mention that the stage 1 of the reduction +*> = 'N': "No": to mention that the stage 1 of the reduction *> from dense to band using the zhetrd_he2hb routine -*> was not called before this routine to reproduce AB. -*> In other term this routine is called as standalone. -*> = 'Y': "Yes": to mention that the stage 1 of the -*> reduction from dense to band using the zhetrd_he2hb +*> was not called before this routine to reproduce AB. +*> In other term this routine is called as standalone. +*> = 'Y': "Yes": to mention that the stage 1 of the +*> reduction from dense to band using the zhetrd_he2hb *> routine has been called to produce AB (e.g., AB is *> the output of zhetrd_he2hb. *> \endverbatim @@ -66,10 +66,10 @@ *> \param[in] VECT *> \verbatim *> VECT is CHARACTER*1 -*> = 'N': No need for the Housholder representation, +*> = 'N': No need for the Housholder representation, *> and thus LHOUS is of size max(1, 4*N); -*> = 'V': the Householder representation is needed to -*> either generate or to apply Q later on, +*> = 'V': the Householder representation is needed to +*> either generate or to apply Q later on, *> then LHOUS is to be queried and computed. *> (NOT AVAILABLE IN THIS RELEASE). *> \endverbatim @@ -132,34 +132,39 @@ *> *> \param[out] HOUS *> \verbatim -*> HOUS is COMPLEX*16 array, dimension LHOUS, that -*> store the Householder representation. +*> HOUS is COMPLEX*16 array, dimension (MAX(1,LHOUS)) +*> Stores the Householder representation. *> \endverbatim *> *> \param[in] LHOUS *> \verbatim *> LHOUS is INTEGER -*> The dimension of the array HOUS. LHOUS = MAX(1, dimension) -*> If LWORK = -1, or LHOUS=-1, +*> The dimension of the array HOUS. +*> If N = 0 or KD <= 1, LHOUS >= 1, else LHOUS = MAX(1, dimension). +*> +*> If LWORK = -1, or LHOUS = -1, *> then a query is assumed; the routine *> only calculates the optimal size of the HOUS array, returns *> this value as the first entry of the HOUS array, and no error *> message related to LHOUS is issued by XERBLA. *> LHOUS = MAX(1, dimension) where *> dimension = 4*N if VECT='N' -*> not available now if VECT='H' +*> not available now if VECT='H' *> \endverbatim *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX*16 array, dimension LWORK. +*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)). +*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK = MAX(1, dimension) -*> If LWORK = -1, or LHOUS=-1, +*> The dimension of the array WORK. +*> If N = 0 or KD <= 1, LWORK >= 1, else LWORK = MAX(1, dimension). +*> +*> If LWORK = -1, or LHOUS = -1, *> then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error @@ -188,7 +193,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16OTHERcomputational +*> \ingroup hetrd_hb2st * *> \par Further Details: * ===================== @@ -208,7 +213,7 @@ *> http://doi.acm.org/10.1145/2063384.2063394 *> *> A. Haidar, J. Kurzak, P. Luszczek, 2013. -*> An improved parallel singular value algorithm and its implementation +*> An improved parallel singular value algorithm and its implementation *> for multicore hardware, In Proceedings of 2013 International Conference *> for High Performance Computing, Networking, Storage and Analysis (SC '13). *> Denver, Colorado, USA, 2013. @@ -216,16 +221,16 @@ *> http://doi.acm.org/10.1145/2503210.2503292 *> *> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. -*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure +*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure *> calculations based on fine-grained memory aware tasks. *> International Journal of High Performance Computing Applications. *> Volume 28 Issue 2, Pages 196-209, May 2014. -*> http://hpc.sagepub.com/content/28/2/196 +*> http://hpc.sagepub.com/content/28/2/196 *> *> \endverbatim *> * ===================================================================== - SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, + SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, $ D, E, HOUS, LHOUS, WORK, LWORK, INFO ) * * @@ -259,11 +264,11 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * .. * .. Local Scalars .. LOGICAL LQUERY, WANTQ, UPPER, AFTERS1 - INTEGER I, M, K, IB, SWEEPID, MYID, SHIFT, STT, ST, + INTEGER I, M, K, IB, SWEEPID, MYID, SHIFT, STT, ST, $ ED, STIND, EDIND, BLKLASTIND, COLPT, THED, $ STEPERCOL, GRSIZ, THGRSIZ, THGRNB, THGRID, - $ NBTILES, TTYPE, TID, NTHREADS, DEBUG, - $ ABDPOS, ABOFDPOS, DPOS, OFDPOS, AWPOS, + $ NBTILES, TTYPE, TID, NTHREADS, + $ ABDPOS, ABOFDPOS, DPOS, OFDPOS, AWPOS, $ INDA, INDW, APOS, SIZEA, LDA, INDV, INDTAU, $ SIZEV, SIZETAU, LDV, LHMIN, LWMIN DOUBLE PRECISION ABSTMP @@ -277,7 +282,7 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * .. * .. External Functions .. LOGICAL LSAME - INTEGER ILAENV2STAGE + INTEGER ILAENV2STAGE EXTERNAL LSAME, ILAENV2STAGE * .. * .. Executable Statements .. @@ -285,7 +290,6 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * Determine the minimal workspace size required. * Test the input parameters * - DEBUG = 0 INFO = 0 AFTERS1 = LSAME( STAGE1, 'Y' ) WANTQ = LSAME( VECT, 'V' ) @@ -294,9 +298,14 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * * Determine the block size, the workspace size and the hous size. * - IB = ILAENV2STAGE( 2, 'ZHETRD_HB2ST', VECT, N, KD, -1, -1 ) - LHMIN = ILAENV2STAGE( 3, 'ZHETRD_HB2ST', VECT, N, KD, IB, -1 ) - LWMIN = ILAENV2STAGE( 4, 'ZHETRD_HB2ST', VECT, N, KD, IB, -1 ) + IB = ILAENV2STAGE( 2, 'ZHETRD_HB2ST', VECT, N, KD, -1, -1 ) + IF( N.EQ.0 .OR. KD.LE.1 ) THEN + LHMIN = 1 + LWMIN = 1 + ELSE + LHMIN = ILAENV2STAGE( 3, 'ZHETRD_HB2ST', VECT, N, KD, IB, -1 ) + LWMIN = ILAENV2STAGE( 4, 'ZHETRD_HB2ST', VECT, N, KD, IB, -1 ) + END IF * IF( .NOT.AFTERS1 .AND. .NOT.LSAME( STAGE1, 'N' ) ) THEN INFO = -1 @@ -358,7 +367,7 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, ABDPOS = KD + 1 ABOFDPOS = KD ELSE - APOS = INDA + APOS = INDA AWPOS = INDA + KD + 1 DPOS = APOS OFDPOS = DPOS + 1 @@ -366,11 +375,11 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, ABOFDPOS = 2 ENDIF -* -* Case KD=0: -* The matrix is diagonal. We just copy it (convert to "real" for -* complex because D is double and the imaginary part should be 0) -* and store it in D. A sequential code here is better or +* +* Case KD=0: +* The matrix is diagonal. We just copy it (convert to "real" for +* complex because D is double and the imaginary part should be 0) +* and store it in D. A sequential code here is better or * in a parallel environment it might need two cores for D and E * IF( KD.EQ.0 ) THEN @@ -385,17 +394,17 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, WORK( 1 ) = 1 RETURN END IF -* -* Case KD=1: -* The matrix is already Tridiagonal. We have to make diagonal +* +* Case KD=1: +* The matrix is already Tridiagonal. We have to make diagonal * and offdiagonal elements real, and store them in D and E. -* For that, for real precision just copy the diag and offdiag -* to D and E while for the COMPLEX case the bulge chasing is -* performed to convert the hermetian tridiagonal to symmetric -* tridiagonal. A simpler conversion formula might be used, but then +* For that, for real precision just copy the diag and offdiag +* to D and E while for the COMPLEX case the bulge chasing is +* performed to convert the hermetian tridiagonal to symmetric +* tridiagonal. A simpler conversion formula might be used, but then * updating the Q matrix will be required and based if Q is generated -* or not this might complicate the story. -* +* or not this might complicate the story. +* IF( KD.EQ.1 ) THEN DO 50 I = 1, N D( I ) = DBLE( AB( ABDPOS, I ) ) @@ -444,7 +453,7 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, RETURN END IF * -* Main code start here. +* Main code start here. * Reduce the hermitian band of A to a tridiagonal matrix. * THGRSIZ = N @@ -453,7 +462,7 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, NBTILES = CEILING( REAL(N)/REAL(KD) ) STEPERCOL = CEILING( REAL(SHIFT)/REAL(GRSIZ) ) THGRNB = CEILING( REAL(N-1)/REAL(THGRSIZ) ) -* +* CALL ZLACPY( "A", KD+1, N, AB, LDAB, WORK( APOS ), LDA ) CALL ZLASET( "A", KD, N, ZERO, ZERO, WORK( AWPOS ), LDA ) * @@ -462,7 +471,7 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, * #if defined(_OPENMP) !$OMP PARALLEL PRIVATE( TID, THGRID, BLKLASTIND ) -!$OMP$ PRIVATE( THED, I, M, K, ST, ED, STT, SWEEPID ) +!$OMP$ PRIVATE( THED, I, M, K, ST, ED, STT, SWEEPID ) !$OMP$ PRIVATE( MYID, TTYPE, COLPT, STIND, EDIND ) !$OMP$ SHARED ( UPLO, WANTQ, INDV, INDTAU, HOUS, WORK) !$OMP$ SHARED ( N, KD, IB, NBTILES, LDA, LDV, INDA ) @@ -471,7 +480,7 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, #endif * * main bulge chasing loop -* +* DO 100 THGRID = 1, THGRNB STT = (THGRID-1)*THGRSIZ+1 THED = MIN( (STT + THGRSIZ -1), (N-1)) @@ -482,7 +491,7 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, ST = STT DO 130 SWEEPID = ST, ED DO 140 K = 1, GRSIZ - MYID = (I-SWEEPID)*(STEPERCOL*GRSIZ) + MYID = (I-SWEEPID)*(STEPERCOL*GRSIZ) $ + (M-1)*GRSIZ + K IF ( MYID.EQ.1 ) THEN TTYPE = 1 @@ -508,17 +517,17 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, ENDIF * * Call the kernel -* +* #if defined(_OPENMP) && _OPENMP >= 201307 - IF( TTYPE.NE.1 ) THEN + IF( TTYPE.NE.1 ) THEN !$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1)) !$OMP$ DEPEND(in:WORK(MYID-1)) !$OMP$ DEPEND(out:WORK(MYID)) TID = OMP_GET_THREAD_NUM() - CALL ZHB2ST_KERNELS( UPLO, WANTQ, TTYPE, + CALL ZHB2ST_KERNELS( UPLO, WANTQ, TTYPE, $ STIND, EDIND, SWEEPID, N, KD, IB, - $ WORK ( INDA ), LDA, + $ WORK ( INDA ), LDA, $ HOUS( INDV ), HOUS( INDTAU ), LDV, $ WORK( INDW + TID*KD ) ) !$OMP END TASK @@ -526,20 +535,20 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, !$OMP TASK DEPEND(in:WORK(MYID+SHIFT-1)) !$OMP$ DEPEND(out:WORK(MYID)) TID = OMP_GET_THREAD_NUM() - CALL ZHB2ST_KERNELS( UPLO, WANTQ, TTYPE, + CALL ZHB2ST_KERNELS( UPLO, WANTQ, TTYPE, $ STIND, EDIND, SWEEPID, N, KD, IB, - $ WORK ( INDA ), LDA, + $ WORK ( INDA ), LDA, $ HOUS( INDV ), HOUS( INDTAU ), LDV, $ WORK( INDW + TID*KD ) ) !$OMP END TASK ENDIF #else - CALL ZHB2ST_KERNELS( UPLO, WANTQ, TTYPE, + CALL ZHB2ST_KERNELS( UPLO, WANTQ, TTYPE, $ STIND, EDIND, SWEEPID, N, KD, IB, - $ WORK ( INDA ), LDA, + $ WORK ( INDA ), LDA, $ HOUS( INDV ), HOUS( INDTAU ), LDV, $ WORK( INDW ) ) -#endif +#endif IF ( BLKLASTIND.GE.(N-1) ) THEN STT = STT + 1 EXIT @@ -554,14 +563,14 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, !$OMP END MASTER !$OMP END PARALLEL #endif -* +* * Copy the diagonal from A to D. Note that D is REAL thus only * the Real part is needed, the imaginary part should be zero. * DO 150 I = 1, N D( I ) = DBLE( WORK( DPOS+(I-1)*LDA ) ) 150 CONTINUE -* +* * Copy the off diagonal from A to E. Note that E is REAL thus only * the Real part is needed, the imaginary part should be zero. * @@ -575,11 +584,10 @@ SUBROUTINE ZHETRD_HB2ST( STAGE1, VECT, UPLO, N, KD, AB, LDAB, 170 CONTINUE ENDIF * - HOUS( 1 ) = LHMIN WORK( 1 ) = LWMIN RETURN * * End of ZHETRD_HB2ST * END - + diff --git a/lapack-netlib/SRC/zhetrd_he2hb.f b/lapack-netlib/SRC/zhetrd_he2hb.f index e1b2e17948..3e3bfa374c 100644 --- a/lapack-netlib/SRC/zhetrd_he2hb.f +++ b/lapack-netlib/SRC/zhetrd_he2hb.f @@ -123,8 +123,8 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX*16 array, dimension (LWORK) -*> On exit, if INFO = 0, or if LWORK=-1, +*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, or if LWORK = -1, *> WORK(1) returns the size of LWORK. *> \endverbatim *> @@ -132,7 +132,9 @@ *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK which should be calculated -*> by a workspace query. LWORK = MAX(1, LWORK_QUERY) +*> by a workspace query. +*> If N <= KD+1, LWORK >= 1, else LWORK = MAX(1, LWORK_QUERY). +*> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error @@ -158,7 +160,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16HEcomputational +*> \ingroup hetrd_he2hb * *> \par Further Details: * ===================== @@ -293,8 +295,12 @@ SUBROUTINE ZHETRD_HE2HB( UPLO, N, KD, A, LDA, AB, LDAB, TAU, INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) - LWMIN = ILAENV2STAGE( 4, 'ZHETRD_HE2HB', '', N, KD, -1, -1 ) - + IF( N.LE.KD+1 ) THEN + LWMIN = 1 + ELSE + LWMIN = ILAENV2STAGE( 4, 'ZHETRD_HE2HB', '', N, KD, -1, -1 ) + END IF +* IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN diff --git a/lapack-netlib/SRC/zhetrf.f b/lapack-netlib/SRC/zhetrf.f index 78d4f71b89..433887108b 100644 --- a/lapack-netlib/SRC/zhetrf.f +++ b/lapack-netlib/SRC/zhetrf.f @@ -107,7 +107,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >=1. For best performance +*> The length of WORK. LWORK >= 1. For best performance *> LWORK >= N*NB, where NB is the block size returned by ILAENV. *> \endverbatim *> @@ -130,7 +130,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16HEcomputational +*> \ingroup hetrf * *> \par Further Details: * ===================== @@ -227,7 +227,7 @@ SUBROUTINE ZHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) * Determine the block size * NB = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 ) - LWKOPT = N*NB + LWKOPT = MAX( 1, N*NB ) WORK( 1 ) = LWKOPT END IF * @@ -346,6 +346,7 @@ SUBROUTINE ZHETRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) END IF * 40 CONTINUE +* WORK( 1 ) = LWKOPT RETURN * diff --git a/lapack-netlib/SRC/zhetrf_aa.f b/lapack-netlib/SRC/zhetrf_aa.f index 537c16e8cd..381c87d51c 100644 --- a/lapack-netlib/SRC/zhetrf_aa.f +++ b/lapack-netlib/SRC/zhetrf_aa.f @@ -101,8 +101,10 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >= MAX(1,2*N). For optimum performance -*> LWORK >= N*(1+NB), where NB is the optimal blocksize. +*> The length of WORK. +*> LWORK >= 1, if N >= 1, and LWORK >= 2*N, otherwise. +*> For optimum performance LWORK >= N*(1+NB), where NB is +*> the optimal blocksize, returned by ILAENV. *> *> If LWORK = -1, then a workspace query is assumed; the routine *> only calculates the optimal size of the WORK array, returns @@ -125,10 +127,10 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16HEcomputational +*> \ingroup hetrf_aa * * ===================================================================== - SUBROUTINE ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) + SUBROUTINE ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- @@ -152,7 +154,7 @@ SUBROUTINE ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) * * .. Local Scalars .. LOGICAL LQUERY, UPPER - INTEGER J, LWKOPT + INTEGER J, LWKMIN, LWKOPT INTEGER NB, MJ, NJ, K1, K2, J1, J2, J3, JB COMPLEX*16 ALPHA * .. @@ -178,18 +180,25 @@ SUBROUTINE ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) + IF( N.LE.1 ) THEN + LWKMIN = 1 + LWKOPT = 1 + ELSE + LWKMIN = 2*N + LWKOPT = (NB+1)*N + END IF +* IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -7 END IF * IF( INFO.EQ.0 ) THEN - LWKOPT = (NB+1)*N WORK( 1 ) = LWKOPT END IF * @@ -202,11 +211,11 @@ SUBROUTINE ZHETRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO) * * Quick return * - IF ( N.EQ.0 ) THEN + IF( N.EQ.0 ) THEN RETURN ENDIF IPIV( 1 ) = 1 - IF ( N.EQ.1 ) THEN + IF( N.EQ.1 ) THEN A( 1, 1 ) = DBLE( A( 1, 1 ) ) RETURN END IF diff --git a/lapack-netlib/SRC/zhetrf_aa_2stage.f b/lapack-netlib/SRC/zhetrf_aa_2stage.f index 477602b5e6..bab13a99d8 100644 --- a/lapack-netlib/SRC/zhetrf_aa_2stage.f +++ b/lapack-netlib/SRC/zhetrf_aa_2stage.f @@ -87,14 +87,14 @@ *> *> \param[out] TB *> \verbatim -*> TB is COMPLEX*16 array, dimension (LTB) +*> TB is COMPLEX*16 array, dimension (MAX(1,LTB)) *> On exit, details of the LU factorization of the band matrix. *> \endverbatim *> *> \param[in] LTB *> \verbatim *> LTB is INTEGER -*> The size of the array TB. LTB >= 4*N, internally +*> The size of the array TB. LTB >= MAX(1,4*N), internally *> used to select NB such that LTB >= (3*NB+1)*N. *> *> If LTB = -1, then a workspace query is assumed; the @@ -121,14 +121,14 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX*16 workspace of size LWORK +*> WORK is COMPLEX*16 workspace of size (MAX(1,LWORK)) *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The size of WORK. LWORK >= N, internally used to select NB -*> such that LWORK >= N*NB. +*> The size of WORK. LWORK >= MAX(1,N), internally used to +*> select NB such that LWORK >= N*NB. *> *> If LWORK = -1, then a workspace query is assumed; the *> routine only calculates the optimal size of the WORK array, @@ -152,7 +152,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16SYcomputational +*> \ingroup hetrf_aa_2stage * * ===================================================================== SUBROUTINE ZHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, @@ -182,7 +182,7 @@ SUBROUTINE ZHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, * .. Local Scalars .. LOGICAL UPPER, TQUERY, WQUERY INTEGER I, J, K, I1, I2, TD - INTEGER LDTB, NB, KB, JB, NT, IINFO + INTEGER LWKOPT, LDTB, NB, KB, JB, NT, IINFO COMPLEX*16 PIV * .. * .. External Functions .. @@ -212,9 +212,9 @@ SUBROUTINE ZHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF ( LTB .LT. 4*N .AND. .NOT.TQUERY ) THEN + ELSE IF( LTB.LT.MAX( 1, 4*N ) .AND. .NOT.TQUERY ) THEN INFO = -6 - ELSE IF ( LWORK .LT. N .AND. .NOT.WQUERY ) THEN + ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.WQUERY ) THEN INFO = -10 END IF * @@ -228,10 +228,10 @@ SUBROUTINE ZHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, NB = ILAENV( 1, 'ZHETRF_AA_2STAGE', UPLO, N, -1, -1, -1 ) IF( INFO.EQ.0 ) THEN IF( TQUERY ) THEN - TB( 1 ) = (3*NB+1)*N + TB( 1 ) = MAX( 1, (3*NB+1)*N ) END IF IF( WQUERY ) THEN - WORK( 1 ) = N*NB + WORK( 1 ) = MAX( 1, N*NB ) END IF END IF IF( TQUERY .OR. WQUERY ) THEN @@ -240,7 +240,7 @@ SUBROUTINE ZHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, * * Quick return * - IF ( N.EQ.0 ) THEN + IF( N.EQ.0 ) THEN RETURN ENDIF * @@ -392,7 +392,7 @@ SUBROUTINE ZHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, CALL ZGETRF( N-(J+1)*NB, NB, $ WORK, N, $ IPIV( (J+1)*NB+1 ), IINFO ) -c IF (IINFO.NE.0 .AND. INFO.EQ.0) THEN +c IF( IINFO.NE.0 .AND. INFO.EQ.0 ) THEN c INFO = IINFO+(J+1)*NB c END IF * @@ -587,7 +587,7 @@ SUBROUTINE ZHETRF_AA_2STAGE( UPLO, N, A, LDA, TB, LTB, IPIV, CALL ZGETRF( N-(J+1)*NB, NB, $ A( (J+1)*NB+1, J*NB+1 ), LDA, $ IPIV( (J+1)*NB+1 ), IINFO ) -c IF (IINFO.NE.0 .AND. INFO.EQ.0) THEN +c IF( IINFO.NE.0 .AND. INFO.EQ.0 ) THEN c INFO = IINFO+(J+1)*NB c END IF * diff --git a/lapack-netlib/SRC/zhetrf_rk.f b/lapack-netlib/SRC/zhetrf_rk.f index 73dd9f9d07..7c505fa4de 100644 --- a/lapack-netlib/SRC/zhetrf_rk.f +++ b/lapack-netlib/SRC/zhetrf_rk.f @@ -177,14 +177,14 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX*16 array, dimension ( MAX(1,LWORK) ). +*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)). *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >=1. For best performance +*> The length of WORK. LWORK >= 1. For best performance *> LWORK >= N*NB, where NB is the block size returned *> by ILAENV. *> @@ -229,7 +229,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16HEcomputational +*> \ingroup hetrf_rk * *> \par Further Details: * ===================== @@ -310,7 +310,7 @@ SUBROUTINE ZHETRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, * Determine the block size * NB = ILAENV( 1, 'ZHETRF_RK', UPLO, N, -1, -1, -1 ) - LWKOPT = N*NB + LWKOPT = MAX( 1, N*NB ) WORK( 1 ) = LWKOPT END IF * diff --git a/lapack-netlib/SRC/zhetrf_rook.f b/lapack-netlib/SRC/zhetrf_rook.f index e9de472486..a563490927 100644 --- a/lapack-netlib/SRC/zhetrf_rook.f +++ b/lapack-netlib/SRC/zhetrf_rook.f @@ -122,7 +122,7 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The length of WORK. LWORK >=1. For best performance +*> The length of WORK. LWORK >= 1. For best performance *> LWORK >= N*NB, where NB is the block size returned by ILAENV. *> *> If LWORK = -1, then a workspace query is assumed; the routine @@ -150,7 +150,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16HEcomputational +*> \ingroup hetrf_rook * *> \par Further Details: * ===================== diff --git a/lapack-netlib/SRC/zhetri2.f b/lapack-netlib/SRC/zhetri2.f index 384745c3af..1d932b866c 100644 --- a/lapack-netlib/SRC/zhetri2.f +++ b/lapack-netlib/SRC/zhetri2.f @@ -88,16 +88,16 @@ *> *> \param[out] WORK *> \verbatim -*> WORK is COMPLEX*16 array, dimension (N+NB+1)*(NB+3) +*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)). *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. -*> WORK is size >= (N+NB+1)*(NB+3) +*> If N = 0, LWORK >= 1, else LWORK >= (N+NB+1)*(NB+3). *> If LWORK = -1, then a workspace query is assumed; the routine -*> calculates: +*> calculates: *> - the optimal size of the WORK array, returns *> this value as the first entry of the WORK array, *> - and no error message related to LWORK is issued by XERBLA. @@ -120,7 +120,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16HEcomputational +*> \ingroup hetri2 * * ===================================================================== SUBROUTINE ZHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) @@ -159,9 +159,13 @@ SUBROUTINE ZHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) +* * Get blocksize +* NBMAX = ILAENV( 1, 'ZHETRF', UPLO, N, -1, -1, -1 ) - IF ( NBMAX .GE. N ) THEN + IF( N.EQ.0 ) THEN + MINSIZE = 1 + ELSE IF( NBMAX.GE.N ) THEN MINSIZE = N ELSE MINSIZE = (N+NBMAX+1)*(NBMAX+3) @@ -173,28 +177,29 @@ SUBROUTINE ZHETRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO ) INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 - ELSE IF (LWORK .LT. MINSIZE .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.MINSIZE .AND. .NOT.LQUERY ) THEN INFO = -7 END IF -* -* Quick return if possible -* * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZHETRI2', -INFO ) RETURN ELSE IF( LQUERY ) THEN - WORK(1)=MINSIZE + WORK( 1 ) = MINSIZE RETURN END IF +* +* Quick return if possible +* IF( N.EQ.0 ) $ RETURN - IF( NBMAX .GE. N ) THEN + IF( NBMAX.GE.N ) THEN CALL ZHETRI( UPLO, N, A, LDA, IPIV, WORK, INFO ) ELSE CALL ZHETRI2X( UPLO, N, A, LDA, IPIV, WORK, NBMAX, INFO ) END IF +* RETURN * * End of ZHETRI2 diff --git a/lapack-netlib/SRC/zhetrs_aa.f b/lapack-netlib/SRC/zhetrs_aa.f index 06ac1fd287..b7a1f7f07b 100644 --- a/lapack-netlib/SRC/zhetrs_aa.f +++ b/lapack-netlib/SRC/zhetrs_aa.f @@ -106,7 +106,13 @@ *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= max(1,3*N-2). +*> The dimension of the array WORK. +*> If MIN(N,NRHS) = 0, LWORK >= 1, else LWORK >= 3*N-2. +*> +*> If LWORK = -1, then a workspace query is assumed; the routine +*> only calculates the minimal size of the WORK array, returns +*> this value as the first entry of the WORK array, and no error +*> message related to LWORK is issued by XERBLA. *> \endverbatim *> *> \param[out] INFO @@ -124,7 +130,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup complex16HEcomputational +*> \ingroup hetrs_aa * * ===================================================================== SUBROUTINE ZHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, @@ -152,7 +158,7 @@ SUBROUTINE ZHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, * .. * .. Local Scalars .. LOGICAL LQUERY, UPPER - INTEGER K, KP, LWKOPT + INTEGER K, KP, LWKMIN * .. * .. External Functions .. LOGICAL LSAME @@ -162,13 +168,19 @@ SUBROUTINE ZHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, EXTERNAL ZGTSV, ZSWAP, ZTRSM, ZLACGV, ZLACPY, XERBLA * .. * .. Intrinsic Functions .. - INTRINSIC MAX + INTRINSIC MIN, MAX * .. * .. Executable Statements .. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) LQUERY = ( LWORK.EQ.-1 ) + IF( MIN( N, NRHS ).EQ.0 ) THEN + LWKMIN = 1 + ELSE + LWKMIN = 3*N-2 + END IF +* IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN @@ -179,21 +191,20 @@ SUBROUTINE ZHETRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 - ELSE IF( LWORK.LT.MAX( 1, 3*N-2 ) .AND. .NOT.LQUERY ) THEN + ELSE IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN INFO = -10 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZHETRS_AA', -INFO ) RETURN ELSE IF( LQUERY ) THEN - LWKOPT = (3*N-2) - WORK( 1 ) = LWKOPT + WORK( 1 ) = LWKMIN RETURN END IF * * Quick return if possible * - IF( N.EQ.0 .OR. NRHS.EQ.0 ) + IF( MIN( N, NRHS ).EQ.0 ) $ RETURN * IF( UPPER ) THEN diff --git a/lapack-netlib/SRC/zlamswlq.f b/lapack-netlib/SRC/zlamswlq.f index 4abefa4343..59a0a55581 100644 --- a/lapack-netlib/SRC/zlamswlq.f +++ b/lapack-netlib/SRC/zlamswlq.f @@ -127,17 +127,20 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. -*> If SIDE = 'L', LWORK >= max(1,NB) * MB; -*> if SIDE = 'R', LWORK >= max(1,M) * MB. +*> If MIN(M,N,K) = 0, LWORK >= 1. +*> If SIDE = 'L', LWORK >= max(1,NB*MB). +*> If SIDE = 'R', LWORK >= max(1,M*MB). +*> *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim @@ -189,92 +192,103 @@ *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 *> \endverbatim *> +*> \ingroup lamswlq +*> * ===================================================================== SUBROUTINE ZLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, - $ LDT, C, LDC, WORK, LWORK, INFO ) + $ LDT, C, LDC, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. - CHARACTER SIDE, TRANS - INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC + CHARACTER SIDE, TRANS + INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC * .. * .. Array Arguments .. - COMPLEX*16 A( LDA, * ), WORK( * ), C(LDC, * ), - $ T( LDT, * ) + COMPLEX*16 A( LDA, * ), WORK( * ), C( LDC, * ), + $ T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER I, II, KK, LW, CTR + LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY + INTEGER I, II, KK, LW, CTR, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME +* .. * .. External Subroutines .. - EXTERNAL ZTPMLQT, ZGEMLQT, XERBLA + EXTERNAL ZTPMLQT, ZGEMLQT, XERBLA * .. * .. Executable Statements .. * * Test the input arguments * - LQUERY = LWORK.LT.0 + INFO = 0 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'C' ) LEFT = LSAME( SIDE, 'L' ) RIGHT = LSAME( SIDE, 'R' ) - IF (LEFT) THEN + IF( LEFT ) THEN LW = N * MB ELSE LW = M * MB END IF * - INFO = 0 + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF +* IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN - INFO = -1 + INFO = -1 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN - INFO = -2 + INFO = -2 ELSE IF( K.LT.0 ) THEN INFO = -5 ELSE IF( M.LT.K ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 - ELSE IF( K.LT.MB .OR. MB.LT.1) THEN + ELSE IF( K.LT.MB .OR. MB.LT.1 ) THEN INFO = -6 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN INFO = -9 - ELSE IF( LDT.LT.MAX( 1, MB) ) THEN + ELSE IF( LDT.LT.MAX( 1, MB ) ) THEN INFO = -11 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN - INFO = -13 - ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN + INFO = -13 + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -15 END IF * + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = LWMIN + END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLAMSWLQ', -INFO ) - WORK(1) = LW RETURN - ELSE IF (LQUERY) THEN - WORK(1) = LW + ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * - IF( MIN(M,N,K).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF * IF((NB.LE.K).OR.(NB.GE.MAX(M,N,K))) THEN CALL ZGEMLQT( SIDE, TRANS, M, N, K, MB, A, LDA, - $ T, LDT, C, LDC, WORK, INFO) + $ T, LDT, C, LDC, WORK, INFO ) RETURN END IF * @@ -403,7 +417,7 @@ SUBROUTINE ZLAMSWLQ( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, * END IF * - WORK(1) = LW + WORK( 1 ) = LWMIN RETURN * * End of ZLAMSWLQ diff --git a/lapack-netlib/SRC/zlamtsqr.f b/lapack-netlib/SRC/zlamtsqr.f index 5030cb75fd..03770c06e3 100644 --- a/lapack-netlib/SRC/zlamtsqr.f +++ b/lapack-netlib/SRC/zlamtsqr.f @@ -128,22 +128,24 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) -*> +*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim +*> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER *> The dimension of the array WORK. +*> If MIN(M,N,K) = 0, LWORK >= 1. +*> If SIDE = 'L', LWORK >= max(1,N*NB). +*> If SIDE = 'R', LWORK >= max(1,MB*NB). *> -*> If SIDE = 'L', LWORK >= max(1,N)*NB; -*> if SIDE = 'R', LWORK >= max(1,MB)*NB. *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. -*> *> \endverbatim +*> *> \param[out] INFO *> \verbatim *> INFO is INTEGER @@ -191,46 +193,50 @@ *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 *> \endverbatim *> +*> \ingroup lamtsqr +*> * ===================================================================== SUBROUTINE ZLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, - $ LDT, C, LDC, WORK, LWORK, INFO ) + $ LDT, C, LDC, WORK, LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. - CHARACTER SIDE, TRANS - INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC + CHARACTER SIDE, TRANS + INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC * .. * .. Array Arguments .. - COMPLEX*16 A( LDA, * ), WORK( * ), C(LDC, * ), - $ T( LDT, * ) + COMPLEX*16 A( LDA, * ), WORK( * ), C( LDC, * ), + $ T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY - INTEGER I, II, KK, LW, CTR, Q + LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY + INTEGER I, II, KK, LW, CTR, Q, MINMNK, LWMIN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME +* .. * .. External Subroutines .. - EXTERNAL ZGEMQRT, ZTPMQRT, XERBLA + EXTERNAL ZGEMQRT, ZTPMQRT, XERBLA * .. * .. Executable Statements .. * * Test the input arguments * - LQUERY = LWORK.LT.0 + INFO = 0 + LQUERY = ( LWORK.EQ.-1 ) NOTRAN = LSAME( TRANS, 'N' ) TRAN = LSAME( TRANS, 'C' ) LEFT = LSAME( SIDE, 'L' ) RIGHT = LSAME( SIDE, 'R' ) - IF (LEFT) THEN + IF( LEFT ) THEN LW = N * NB Q = M ELSE @@ -238,11 +244,17 @@ SUBROUTINE ZLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, Q = N END IF * - INFO = 0 + MINMNK = MIN( M, N, K ) + IF( MINMNK.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = MAX( 1, LW ) + END IF +* IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN - INFO = -1 + INFO = -1 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN - INFO = -2 + INFO = -2 ELSE IF( M.LT.K ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN @@ -253,38 +265,38 @@ SUBROUTINE ZLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, INFO = -7 ELSE IF( LDA.LT.MAX( 1, Q ) ) THEN INFO = -9 - ELSE IF( LDT.LT.MAX( 1, NB) ) THEN + ELSE IF( LDT.LT.MAX( 1, NB ) ) THEN INFO = -11 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN - INFO = -13 - ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN + INFO = -13 + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -15 END IF * -* Determine the block size if it is tall skinny or short and wide -* - IF( INFO.EQ.0) THEN - WORK(1) = LW + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = LWMIN END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLAMTSQR', -INFO ) RETURN - ELSE IF (LQUERY) THEN - RETURN + ELSE IF( LQUERY ) THEN + RETURN END IF * * Quick return if possible * - IF( MIN(M,N,K).EQ.0 ) THEN + IF( MINMNK.EQ.0 ) THEN RETURN END IF +* +* Determine the block size if it is tall skinny or short and wide * IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN CALL ZGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA, - $ T, LDT, C, LDC, WORK, INFO) + $ T, LDT, C, LDC, WORK, INFO ) RETURN - END IF + END IF * IF(LEFT.AND.NOTRAN) THEN * @@ -410,7 +422,7 @@ SUBROUTINE ZLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, * END IF * - WORK(1) = LW + WORK( 1 ) = LWMIN RETURN * * End of ZLAMTSQR diff --git a/lapack-netlib/SRC/zlaswlq.f b/lapack-netlib/SRC/zlaswlq.f index be4c48539a..7352071320 100644 --- a/lapack-netlib/SRC/zlaswlq.f +++ b/lapack-netlib/SRC/zlaswlq.f @@ -96,22 +96,23 @@ *> The leading dimension of the array T. LDT >= MB. *> \endverbatim *> -*> *> \param[out] WORK *> \verbatim -*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) -*> +*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= MB*M. +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MB*M, otherwise. +*> *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. -*> *> \endverbatim +*> *> \param[out] INFO *> \verbatim *> INFO is INTEGER @@ -159,33 +160,37 @@ *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 *> \endverbatim *> +*> \ingroup laswlq +*> * ===================================================================== SUBROUTINE ZLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, - $ INFO) + $ INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- * * .. Scalar Arguments .. - INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT + INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT * .. * .. Array Arguments .. - COMPLEX*16 A( LDA, * ), WORK( * ), T( LDT, *) + COMPLEX*16 A( LDA, * ), WORK( * ), T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LQUERY - INTEGER I, II, KK, CTR + LOGICAL LQUERY + INTEGER I, II, KK, CTR, MINMN, LWMIN * .. * .. EXTERNAL FUNCTIONS .. LOGICAL LSAME EXTERNAL LSAME +* .. * .. EXTERNAL SUBROUTINES .. EXTERNAL ZGELQT, ZTPLQT, XERBLA +* .. * .. INTRINSIC FUNCTIONS .. INTRINSIC MAX, MIN, MOD * .. @@ -196,12 +201,19 @@ SUBROUTINE ZLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, INFO = 0 * LQUERY = ( LWORK.EQ.-1 ) +* + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = M*MB + END IF * IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 .OR. N.LT.M ) THEN INFO = -2 - ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 )) THEN + ELSE IF( MB.LT.1 .OR. ( MB.GT.M .AND. M.GT.0 ) ) THEN INFO = -3 ELSE IF( NB.LE.0 ) THEN INFO = -4 @@ -209,60 +221,61 @@ SUBROUTINE ZLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, INFO = -6 ELSE IF( LDT.LT.MB ) THEN INFO = -8 - ELSE IF( ( LWORK.LT.M*MB) .AND. (.NOT.LQUERY) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -10 END IF - IF( INFO.EQ.0) THEN - WORK(1) = MB*M +* + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = LWMIN END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLASWLQ', -INFO ) RETURN - ELSE IF (LQUERY) THEN - RETURN + ELSE IF( LQUERY ) THEN + RETURN END IF * * Quick return if possible * - IF( MIN(M,N).EQ.0 ) THEN - RETURN + IF( MINMN.EQ.0 ) THEN + RETURN END IF * * The LQ Decomposition * - IF((M.GE.N).OR.(NB.LE.M).OR.(NB.GE.N)) THEN - CALL ZGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO) + IF( (M.GE.N) .OR. (NB.LE.M) .OR. (NB.GE.N) ) THEN + CALL ZGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO ) RETURN - END IF + END IF * - KK = MOD((N-M),(NB-M)) - II=N-KK+1 + KK = MOD((N-M),(NB-M)) + II = N-KK+1 * -* Compute the LQ factorization of the first block A(1:M,1:NB) +* Compute the LQ factorization of the first block A(1:M,1:NB) * - CALL ZGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO) - CTR = 1 + CALL ZGELQT( M, NB, MB, A(1,1), LDA, T, LDT, WORK, INFO ) + CTR = 1 * - DO I = NB+1, II-NB+M , (NB-M) + DO I = NB+1, II-NB+M, (NB-M) * -* Compute the QR factorization of the current block A(1:M,I:I+NB-M) +* Compute the QR factorization of the current block A(1:M,I:I+NB-M) * - CALL ZTPLQT( M, NB-M, 0, MB, A(1,1), LDA, A( 1, I ), - $ LDA, T(1, CTR * M + 1), - $ LDT, WORK, INFO ) - CTR = CTR + 1 - END DO + CALL ZTPLQT( M, NB-M, 0, MB, A(1,1), LDA, A( 1, I ), + $ LDA, T(1, CTR * M + 1), + $ LDT, WORK, INFO ) + CTR = CTR + 1 + END DO * * Compute the QR factorization of the last block A(1:M,II:N) * - IF (II.LE.N) THEN + IF( II.LE.N ) THEN CALL ZTPLQT( M, KK, 0, MB, A(1,1), LDA, A( 1, II ), - $ LDA, T(1, CTR * M + 1), LDT, - $ WORK, INFO ) - END IF + $ LDA, T(1, CTR * M + 1), LDT, + $ WORK, INFO ) + END IF * - WORK( 1 ) = M * MB + WORK( 1 ) = LWMIN RETURN * * End of ZLASWLQ diff --git a/lapack-netlib/SRC/zlatrs3.f b/lapack-netlib/SRC/zlatrs3.f index 231a17274a..27eac839bc 100644 --- a/lapack-netlib/SRC/zlatrs3.f +++ b/lapack-netlib/SRC/zlatrs3.f @@ -158,7 +158,11 @@ *> \endverbatim *> *> \param[in] LWORK +*> \verbatim *> LWORK is INTEGER +*> The dimension of the array WORK. +*> +*> If MIN(N,NRHS) = 0, LWORK >= 1, else *> LWORK >= MAX(1, 2*NBA * MAX(NBA, MIN(NRHS, 32)), where *> NBA = (N + NB - 1)/NB and NB is the optimal block size. *> @@ -166,6 +170,7 @@ *> only calculates the optimal dimensions of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. +*> \endverbatim *> *> \param[out] INFO *> \verbatim @@ -182,7 +187,7 @@ *> \author Univ. of Colorado Denver *> \author NAG Ltd. * -*> \ingroup doubleOTHERauxiliary +*> \ingroup latrs3 *> \par Further Details: * ===================== * \verbatim @@ -257,7 +262,7 @@ SUBROUTINE ZLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, LOGICAL LQUERY, NOTRAN, NOUNIT, UPPER INTEGER AWRK, I, IFIRST, IINC, ILAST, II, I1, I2, J, $ JFIRST, JINC, JLAST, J1, J2, K, KK, K1, K2, - $ LANRM, LDS, LSCALE, NB, NBA, NBX, RHS + $ LANRM, LDS, LSCALE, NB, NBA, NBX, RHS, LWMIN DOUBLE PRECISION ANRM, BIGNUM, BNRM, RSCAL, SCAL, SCALOC, $ SCAMIN, SMLNUM, TMAX * .. @@ -296,15 +301,24 @@ SUBROUTINE ZLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, * row. WORK( I + KK * LDS ) is the scale factor of the vector * segment associated with the I-th block row and the KK-th vector * in the block column. +* LSCALE = NBA * MAX( NBA, MIN( NRHS, NBRHS ) ) LDS = NBA +* * The second part stores upper bounds of the triangular A. There are * a total of NBA x NBA blocks, of which only the upper triangular * part or the lower triangular part is referenced. The upper bound of * the block A( I, J ) is stored as WORK( AWRK + I + J * NBA ). +* LANRM = NBA * NBA AWRK = LSCALE - WORK( 1 ) = LSCALE + LANRM +* + IF( MIN( N, NRHS ).EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = LSCALE + LANRM + END IF + WORK( 1 ) = LWMIN * * Test the input parameters. * @@ -326,7 +340,7 @@ SUBROUTINE ZLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, INFO = -8 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -10 - ELSE IF( .NOT.LQUERY .AND. LWORK.LT.WORK( 1 ) ) THEN + ELSE IF( .NOT.LQUERY .AND. LWORK.LT.LWMIN ) THEN INFO = -14 END IF IF( INFO.NE.0 ) THEN diff --git a/lapack-netlib/SRC/zlatsqr.f b/lapack-netlib/SRC/zlatsqr.f index 8c938aebc9..24d00f28a8 100644 --- a/lapack-netlib/SRC/zlatsqr.f +++ b/lapack-netlib/SRC/zlatsqr.f @@ -101,15 +101,18 @@ *> *> \param[out] WORK *> \verbatim -*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) +*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. *> \endverbatim *> *> \param[in] LWORK *> \verbatim *> LWORK is INTEGER -*> The dimension of the array WORK. LWORK >= NB*N. +*> The dimension of the array WORK. +*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= NB*N, otherwise. +*> *> If LWORK = -1, then a workspace query is assumed; the routine -*> only calculates the optimal size of the WORK array, returns +*> only calculates the minimal size of the WORK array, returns *> this value as the first entry of the WORK array, and no error *> message related to LWORK is issued by XERBLA. *> \endverbatim @@ -161,33 +164,37 @@ *> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 *> \endverbatim *> +*> \ingroup latsqr +*> * ===================================================================== SUBROUTINE ZLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, - $ LWORK, INFO) + $ LWORK, INFO ) * * -- LAPACK computational routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. -- * * .. Scalar Arguments .. - INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK + INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK * .. * .. Array Arguments .. - COMPLEX*16 A( LDA, * ), WORK( * ), T(LDT, *) + COMPLEX*16 A( LDA, * ), WORK( * ), T( LDT, * ) * .. * * ===================================================================== * * .. * .. Local Scalars .. - LOGICAL LQUERY - INTEGER I, II, KK, CTR + LOGICAL LQUERY + INTEGER I, II, KK, CTR, LWMIN, MINMN * .. * .. EXTERNAL FUNCTIONS .. LOGICAL LSAME EXTERNAL LSAME +* .. * .. EXTERNAL SUBROUTINES .. - EXTERNAL ZGEQRT, ZTPQRT, XERBLA + EXTERNAL ZGEQRT, ZTPQRT, XERBLA +* .. * .. INTRINSIC FUNCTIONS .. INTRINSIC MAX, MIN, MOD * .. @@ -198,6 +205,13 @@ SUBROUTINE ZLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, INFO = 0 * LQUERY = ( LWORK.EQ.-1 ) +* + MINMN = MIN( M, N ) + IF( MINMN.EQ.0 ) THEN + LWMIN = 1 + ELSE + LWMIN = N*NB + END IF * IF( M.LT.0 ) THEN INFO = -1 @@ -205,64 +219,65 @@ SUBROUTINE ZLATSQR( M, N, MB, NB, A, LDA, T, LDT, WORK, INFO = -2 ELSE IF( MB.LT.1 ) THEN INFO = -3 - ELSE IF( NB.LT.1 .OR. ( NB.GT.N .AND. N.GT.0 )) THEN + ELSE IF( NB.LT.1 .OR. ( NB.GT.N .AND. N.GT.0 ) ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -6 ELSE IF( LDT.LT.NB ) THEN INFO = -8 - ELSE IF( LWORK.LT.(N*NB) .AND. (.NOT.LQUERY) ) THEN + ELSE IF( LWORK.LT.LWMIN .AND. (.NOT.LQUERY) ) THEN INFO = -10 END IF - IF( INFO.EQ.0) THEN - WORK(1) = NB*N +* + IF( INFO.EQ.0 ) THEN + WORK( 1 ) = LWMIN END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLATSQR', -INFO ) RETURN - ELSE IF (LQUERY) THEN - RETURN + ELSE IF( LQUERY ) THEN + RETURN END IF * * Quick return if possible * - IF( MIN(M,N).EQ.0 ) THEN - RETURN + IF( MINMN.EQ.0 ) THEN + RETURN END IF * * The QR Decomposition * - IF ((MB.LE.N).OR.(MB.GE.M)) THEN - CALL ZGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO) - RETURN - END IF - KK = MOD((M-N),(MB-N)) - II=M-KK+1 + IF( (MB.LE.N) .OR. (MB.GE.M) ) THEN + CALL ZGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO ) + RETURN + END IF + KK = MOD((M-N),(MB-N)) + II = M-KK+1 * -* Compute the QR factorization of the first block A(1:MB,1:N) +* Compute the QR factorization of the first block A(1:MB,1:N) * - CALL ZGEQRT( MB, N, NB, A(1,1), LDA, T, LDT, WORK, INFO ) - CTR = 1 + CALL ZGEQRT( MB, N, NB, A(1,1), LDA, T, LDT, WORK, INFO ) + CTR = 1 * - DO I = MB+1, II-MB+N , (MB-N) + DO I = MB+1, II-MB+N, (MB-N) * -* Compute the QR factorization of the current block A(I:I+MB-N,1:N) +* Compute the QR factorization of the current block A(I:I+MB-N,1:N) * - CALL ZTPQRT( MB-N, N, 0, NB, A(1,1), LDA, A( I, 1 ), LDA, - $ T(1, CTR * N + 1), - $ LDT, WORK, INFO ) - CTR = CTR + 1 - END DO + CALL ZTPQRT( MB-N, N, 0, NB, A(1,1), LDA, A( I, 1 ), LDA, + $ T(1, CTR * N + 1), + $ LDT, WORK, INFO ) + CTR = CTR + 1 + END DO * -* Compute the QR factorization of the last block A(II:M,1:N) +* Compute the QR factorization of the last block A(II:M,1:N) * - IF (II.LE.M) THEN - CALL ZTPQRT( KK, N, 0, NB, A(1,1), LDA, A( II, 1 ), LDA, - $ T(1,CTR * N + 1), LDT, - $ WORK, INFO ) - END IF + IF( II.LE.M ) THEN + CALL ZTPQRT( KK, N, 0, NB, A(1,1), LDA, A( II, 1 ), LDA, + $ T(1,CTR * N + 1), LDT, + $ WORK, INFO ) + END IF * - work( 1 ) = N*NB + WORK( 1 ) = LWMIN RETURN * * End of ZLATSQR diff --git a/lapack-netlib/TESTING/EIG/cerrst.f b/lapack-netlib/TESTING/EIG/cerrst.f index 1748a2aad6..d23eb14eac 100644 --- a/lapack-netlib/TESTING/EIG/cerrst.f +++ b/lapack-netlib/TESTING/EIG/cerrst.f @@ -748,17 +748,17 @@ SUBROUTINE CERRST( PATH, NUNIT ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 18 CALL CHEEVR( 'V', 'I', 'U', 1, A, 1, 0.0E0, 0.0E0, 1, 1, 0.0, - $ M, R, Z, 1, IW, Q, 2*N-1, RW, 24*N, IW( 2*N+1 ), + $ M, R, Z, 1, IW, Q, 0, RW, 24*N, IW( 2*N+1 ), $ 10*N, INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 20 CALL CHEEVR( 'V', 'I', 'U', 1, A, 1, 0.0E0, 0.0E0, 1, 1, 0.0, - $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N-1, IW( 2*N-1 ), + $ M, R, Z, 1, IW, Q, 2*N, RW, 0, IW( 2*N-1 ), $ 10*N, INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 22 CALL CHEEVR( 'V', 'I', 'U', 1, A, 1, 0.0E0, 0.0E0, 1, 1, 0.0, - $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW, 10*N-1, + $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW, 0, $ INFO ) CALL CHKXER( 'CHEEVR', INFOT, NOUT, LERR, OK ) NT = NT + 12 @@ -830,19 +830,19 @@ SUBROUTINE CERRST( PATH, NUNIT ) INFOT = 18 CALL CHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1, $ 0.0, 0.0, 1, 1, 0.0, - $ M, R, Z, 1, IW, Q, 2*N-1, RW, 24*N, IW( 2*N+1 ), + $ M, R, Z, 1, IW, Q, 0, RW, 24*N, IW( 2*N+1 ), $ 10*N, INFO ) CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 20 CALL CHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1, $ 0.0, 0.0, 1, 1, 0.0, - $ M, R, Z, 1, IW, Q, 26*N, RW, 24*N-1, IW( 2*N-1 ), + $ M, R, Z, 1, IW, Q, 26*N, RW, 0, IW( 2*N-1 ), $ 10*N, INFO ) CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 22 CALL CHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1, $ 0.0, 0.0, 1, 1, 0.0, - $ M, R, Z, 1, IW, Q, 26*N, RW, 24*N, IW, 10*N-1, + $ M, R, Z, 1, IW, Q, 26*N, RW, 24*N, IW, 0, $ INFO ) CALL CHKXER( 'CHEEVR_2STAGE', INFOT, NOUT, LERR, OK ) NT = NT + 13 diff --git a/lapack-netlib/TESTING/EIG/chkxer.f b/lapack-netlib/TESTING/EIG/chkxer.f index fd00bb65a7..70caf7e0a3 100644 --- a/lapack-netlib/TESTING/EIG/chkxer.f +++ b/lapack-netlib/TESTING/EIG/chkxer.f @@ -61,7 +61,7 @@ SUBROUTINE CHKXER( SRNAMT, INFOT, NOUT, LERR, OK ) RETURN * 9999 FORMAT( ' *** Illegal value of parameter number ', I2, - $ ' not detected by ', A6, ' ***' ) + $ ' not detected by ', A, ' ***' ) * * End of CHKXER * diff --git a/lapack-netlib/TESTING/EIG/derrst.f b/lapack-netlib/TESTING/EIG/derrst.f index 0595386448..7d111e2e0d 100644 --- a/lapack-netlib/TESTING/EIG/derrst.f +++ b/lapack-netlib/TESTING/EIG/derrst.f @@ -735,12 +735,12 @@ SUBROUTINE DERRST( PATH, NUNIT ) CALL CHKXER( 'DSYEVR', INFOT, NOUT, LERR, OK ) INFOT = 18 CALL DSYEVR( 'V', 'I', 'U', 1, A, 1, 0.0D0, 0.0D0, 1, 1, 0.0D0, - $ M, R, Z, 1, IW, Q, 26*N-1, IW( 2*N+1 ), 10*N, + $ M, R, Z, 1, IW, Q, 0, IW( 2*N+1 ), 10*N, $ INFO ) CALL CHKXER( 'DSYEVR', INFOT, NOUT, LERR, OK ) INFOT = 20 CALL DSYEVR( 'V', 'I', 'U', 1, A, 1, 0.0D0, 0.0D0, 1, 1, 0.0D0, - $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N-1, + $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 0, $ INFO ) CALL CHKXER( 'DSYEVR', INFOT, NOUT, LERR, OK ) NT = NT + 11 diff --git a/lapack-netlib/TESTING/EIG/serrst.f b/lapack-netlib/TESTING/EIG/serrst.f index b87fc42ef7..4083463829 100644 --- a/lapack-netlib/TESTING/EIG/serrst.f +++ b/lapack-netlib/TESTING/EIG/serrst.f @@ -733,12 +733,12 @@ SUBROUTINE SERRST( PATH, NUNIT ) CALL CHKXER( 'SSYEVR', INFOT, NOUT, LERR, OK ) INFOT = 18 CALL SSYEVR( 'V', 'I', 'U', 1, A, 1, 0.0E0, 0.0E0, 1, 1, 0.0, - $ M, R, Z, 1, IW, Q, 26*N-1, IW( 2*N+1 ), 10*N, + $ M, R, Z, 1, IW, Q, 0, IW( 2*N+1 ), 10*N, $ INFO ) CALL CHKXER( 'SSYEVR', INFOT, NOUT, LERR, OK ) INFOT = 20 CALL SSYEVR( 'V', 'I', 'U', 1, A, 1, 0.0E0, 0.0E0, 1, 1, 0.0, - $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 10*N-1, + $ M, R, Z, 1, IW, Q, 26*N, IW( 2*N+1 ), 0, $ INFO ) CALL CHKXER( 'SSYEVR', INFOT, NOUT, LERR, OK ) NT = NT + 11 diff --git a/lapack-netlib/TESTING/EIG/zerrst.f b/lapack-netlib/TESTING/EIG/zerrst.f index d7b41c0537..31881c4de1 100644 --- a/lapack-netlib/TESTING/EIG/zerrst.f +++ b/lapack-netlib/TESTING/EIG/zerrst.f @@ -748,17 +748,17 @@ SUBROUTINE ZERRST( PATH, NUNIT ) CALL CHKXER( 'ZHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 18 CALL ZHEEVR( 'V', 'I', 'U', 1, A, 1, 0.0D0, 0.0D0, 1, 1, 0.0D0, - $ M, R, Z, 1, IW, Q, 2*N-1, RW, 24*N, IW( 2*N+1 ), + $ M, R, Z, 1, IW, Q, 0, RW, 24*N, IW( 2*N+1 ), $ 10*N, INFO ) CALL CHKXER( 'ZHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 20 CALL ZHEEVR( 'V', 'I', 'U', 1, A, 1, 0.0D0, 0.0D0, 1, 1, 0.0D0, - $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N-1, IW( 2*N-1 ), + $ M, R, Z, 1, IW, Q, 2*N, RW, 0, IW( 2*N-1 ), $ 10*N, INFO ) CALL CHKXER( 'ZHEEVR', INFOT, NOUT, LERR, OK ) INFOT = 22 CALL ZHEEVR( 'V', 'I', 'U', 1, A, 1, 0.0D0, 0.0D0, 1, 1, 0.0D0, - $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW, 10*N-1, + $ M, R, Z, 1, IW, Q, 2*N, RW, 24*N, IW, 0, $ INFO ) CALL CHKXER( 'ZHEEVR', INFOT, NOUT, LERR, OK ) NT = NT + 12 @@ -830,19 +830,19 @@ SUBROUTINE ZERRST( PATH, NUNIT ) INFOT = 18 CALL ZHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1, $ 0.0D0, 0.0D0, 1, 1, 0.0D0, - $ M, R, Z, 1, IW, Q, 2*N-1, RW, 24*N, IW( 2*N+1 ), + $ M, R, Z, 1, IW, Q, 0, RW, 24*N, IW( 2*N+1 ), $ 10*N, INFO ) CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 20 CALL ZHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1, $ 0.0D0, 0.0D0, 1, 1, 0.0D0, - $ M, R, Z, 1, IW, Q, 26*N, RW, 24*N-1, IW( 2*N-1 ), + $ M, R, Z, 1, IW, Q, 26*N, RW, 0, IW( 2*N-1 ), $ 10*N, INFO ) CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK ) INFOT = 22 CALL ZHEEVR_2STAGE( 'N', 'I', 'U', 1, A, 1, $ 0.0D0, 0.0D0, 1, 1, 0.0D0, - $ M, R, Z, 1, IW, Q, 26*N, RW, 24*N, IW, 10*N-1, + $ M, R, Z, 1, IW, Q, 26*N, RW, 24*N, IW, 0, $ INFO ) CALL CHKXER( 'ZHEEVR_2STAGE', INFOT, NOUT, LERR, OK ) NT = NT + 13 diff --git a/lapack-netlib/TESTING/LIN/cchkhe_aa_2stage.f b/lapack-netlib/TESTING/LIN/cchkhe_aa_2stage.f index 30a61261f5..d79978e557 100644 --- a/lapack-netlib/TESTING/LIN/cchkhe_aa_2stage.f +++ b/lapack-netlib/TESTING/LIN/cchkhe_aa_2stage.f @@ -433,9 +433,9 @@ SUBROUTINE CCHKHE_AA_2STAGE( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, * block factorization, LWORK is the length of AINV. * SRNAMT = 'CHETRF_AA_2STAGE' - LWORK = MIN(N*NB, 3*NMAX*NMAX) - CALL CHETRF_AA_2STAGE( UPLO, N, AFAC, LDA, - $ AINV, (3*NB+1)*N, + LWORK = MIN( MAX( 1, N*NB ), 3*NMAX*NMAX) + CALL CHETRF_AA_2STAGE( UPLO, N, AFAC, LDA, + $ AINV, MAX( 1, (3*NB+1)*N ), $ IWORK, IWORK( 1+N ), $ WORK, LWORK, $ INFO ) @@ -517,7 +517,6 @@ SUBROUTINE CCHKHE_AA_2STAGE( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, CALL CLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) * SRNAMT = 'CHETRS_AA_2STAGE' - LWORK = MAX( 1, 3*N-2 ) CALL CHETRS_AA_2STAGE( UPLO, N, NRHS, AFAC, LDA, $ AINV, (3*NB+1)*N, IWORK, IWORK( 1+N ), $ X, LDA, INFO ) diff --git a/lapack-netlib/TESTING/LIN/cdrvhe_aa_2stage.f b/lapack-netlib/TESTING/LIN/cdrvhe_aa_2stage.f index 51cef512d8..83e8a17b0f 100644 --- a/lapack-netlib/TESTING/LIN/cdrvhe_aa_2stage.f +++ b/lapack-netlib/TESTING/LIN/cdrvhe_aa_2stage.f @@ -400,9 +400,9 @@ SUBROUTINE CDRVHE_AA_2STAGE( * Factor the matrix and solve the system using CHESV_AA. * SRNAMT = 'CHESV_AA_2STAGE ' - LWORK = MIN(N*NB, 3*NMAX*NMAX) + LWORK = MIN( MAX( 1, N*NB ), 3*NMAX*NMAX) CALL CHESV_AA_2STAGE( UPLO, N, NRHS, AFAC, LDA, - $ AINV, (3*NB+1)*N, + $ AINV, MAX( 1, (3*NB+1)*N ), $ IWORK, IWORK( 1+N ), $ X, LDA, WORK, LWORK, INFO ) * diff --git a/lapack-netlib/TESTING/LIN/dchksy_aa_2stage.f b/lapack-netlib/TESTING/LIN/dchksy_aa_2stage.f index bc4e77a5aa..1940351a40 100644 --- a/lapack-netlib/TESTING/LIN/dchksy_aa_2stage.f +++ b/lapack-netlib/TESTING/LIN/dchksy_aa_2stage.f @@ -421,9 +421,9 @@ SUBROUTINE DCHKSY_AA_2STAGE( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, * block factorization, LWORK is the length of AINV. * SRNAMT = 'DSYTRF_AA_2STAGE' - LWORK = MIN(N*NB, 3*NMAX*NMAX) + LWORK = MIN( MAX( 1, N*NB ), 3*NMAX*NMAX ) CALL DSYTRF_AA_2STAGE( UPLO, N, AFAC, LDA, - $ AINV, (3*NB+1)*N, + $ AINV, MAX( 1, (3*NB+1)*N ), $ IWORK, IWORK( 1+N ), $ WORK, LWORK, $ INFO ) @@ -503,7 +503,6 @@ SUBROUTINE DCHKSY_AA_2STAGE( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, CALL DLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) * SRNAMT = 'DSYTRS_AA_2STAGE' - LWORK = MAX( 1, 3*N-2 ) CALL DSYTRS_AA_2STAGE( UPLO, N, NRHS, AFAC, LDA, $ AINV, (3*NB+1)*N, IWORK, IWORK( 1+N ), $ X, LDA, INFO ) diff --git a/lapack-netlib/TESTING/LIN/ddrvsy_aa_2stage.f b/lapack-netlib/TESTING/LIN/ddrvsy_aa_2stage.f index 91c9e8e9af..d04106ae30 100644 --- a/lapack-netlib/TESTING/LIN/ddrvsy_aa_2stage.f +++ b/lapack-netlib/TESTING/LIN/ddrvsy_aa_2stage.f @@ -400,9 +400,9 @@ SUBROUTINE DDRVSY_AA_2STAGE( * Factor the matrix and solve the system using DSYSV_AA. * SRNAMT = 'DSYSV_AA_2STAGE ' - LWORK = MIN(N*NB, 3*NMAX*NMAX) + LWORK = MIN( MAX( 1, N*NB ), 3*NMAX*NMAX ) CALL DSYSV_AA_2STAGE( UPLO, N, NRHS, AFAC, LDA, - $ AINV, (3*NB+1)*N, + $ AINV, MAX( 1, (3*NB+1)*N ), $ IWORK, IWORK( 1+N ), $ X, LDA, WORK, LWORK, INFO ) * diff --git a/lapack-netlib/TESTING/LIN/schksy_aa_2stage.f b/lapack-netlib/TESTING/LIN/schksy_aa_2stage.f index d3c27ae561..6490cd7c37 100644 --- a/lapack-netlib/TESTING/LIN/schksy_aa_2stage.f +++ b/lapack-netlib/TESTING/LIN/schksy_aa_2stage.f @@ -423,9 +423,9 @@ SUBROUTINE SCHKSY_AA_2STAGE( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, * block factorization, LWORK is the length of AINV. * SRNAMT = 'SSYTRF_AA_2STAGE' - LWORK = MIN(N*NB, 3*NMAX*NMAX) + LWORK = MIN( MAX( 1, N*NB ), 3*NMAX*NMAX ) CALL SSYTRF_AA_2STAGE( UPLO, N, AFAC, LDA, - $ AINV, (3*NB+1)*N, + $ AINV, MAX( 1, (3*NB+1)*N ), $ IWORK, IWORK( 1+N ), $ WORK, LWORK, $ INFO ) @@ -505,7 +505,6 @@ SUBROUTINE SCHKSY_AA_2STAGE( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, CALL SLACPY( 'Full', N, NRHS, B, LDA, X, LDA ) * SRNAMT = 'SSYTRS_AA_2STAGE' - LWORK = MAX( 1, 3*N-2 ) CALL SSYTRS_AA_2STAGE( UPLO, N, NRHS, AFAC, LDA, $ AINV, (3*NB+1)*N, IWORK, IWORK( 1+N ), $ X, LDA, INFO ) diff --git a/lapack-netlib/TESTING/LIN/sdrvsy_aa_2stage.f b/lapack-netlib/TESTING/LIN/sdrvsy_aa_2stage.f index aff32bce93..319b90805e 100644 --- a/lapack-netlib/TESTING/LIN/sdrvsy_aa_2stage.f +++ b/lapack-netlib/TESTING/LIN/sdrvsy_aa_2stage.f @@ -400,9 +400,9 @@ SUBROUTINE SDRVSY_AA_2STAGE( * Factor the matrix and solve the system using SSYSV_AA. * SRNAMT = 'SSYSV_AA_2STAGE ' - LWORK = MIN(N*NB, 3*NMAX*NMAX) + LWORK = MIN( MAX( 1, N*NB ), 3*NMAX*NMAX ) CALL SSYSV_AA_2STAGE( UPLO, N, NRHS, AFAC, LDA, - $ AINV, (3*NB+1)*N, + $ AINV, MAX( 1, (3*NB+1)*N ), $ IWORK, IWORK( 1+N ), $ X, LDA, WORK, LWORK, INFO ) * diff --git a/lapack-netlib/TESTING/LIN/zchkhe_aa_2stage.f b/lapack-netlib/TESTING/LIN/zchkhe_aa_2stage.f index 381fac9f2d..51082f1d0b 100644 --- a/lapack-netlib/TESTING/LIN/zchkhe_aa_2stage.f +++ b/lapack-netlib/TESTING/LIN/zchkhe_aa_2stage.f @@ -8,7 +8,7 @@ * Definition: * =========== * -* SUBROUTINE ZCHKHE_AA_2STAGE( DOTYPE, NN, NVAL, NNB, NBVAL, +* SUBROUTINE ZCHKHE_AA_2STAGE( DOTYPE, NN, NVAL, NNB, NBVAL, * NNS, NSVAL, THRESH, TSTERR, NMAX, A, * AFAC, AINV, B, X, XACT, WORK, RWORK, * IWORK, NOUT ) @@ -185,7 +185,8 @@ SUBROUTINE ZCHKHE_AA_2STAGE( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, LOGICAL DOTYPE( * ) INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * ) COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ), - $ RWORK( * ), WORK( * ), X( * ), XACT( * ) + $ WORK( * ), X( * ), XACT( * ) + DOUBLE PRECISION RWORK( * ) * .. * * ===================================================================== @@ -430,9 +431,9 @@ SUBROUTINE ZCHKHE_AA_2STAGE( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, * block factorization, LWORK is the length of AINV. * SRNAMT = 'ZHETRF_AA_2STAGE' - LWORK = MIN(N*NB, 3*NMAX*NMAX) - CALL ZHETRF_AA_2STAGE( UPLO, N, AFAC, LDA, - $ AINV, (3*NB+1)*N, + LWORK = MIN( MAX( 1, N*NB ), 3*NMAX*NMAX ) + CALL ZHETRF_AA_2STAGE( UPLO, N, AFAC, LDA, + $ AINV, MAX( 1, (3*NB+1)*N ), $ IWORK, IWORK( 1+N ), $ WORK, LWORK, $ INFO ) diff --git a/lapack-netlib/TESTING/LIN/zdrvhe_aa_2stage.f b/lapack-netlib/TESTING/LIN/zdrvhe_aa_2stage.f index 9401867e0c..fcd7744912 100644 --- a/lapack-netlib/TESTING/LIN/zdrvhe_aa_2stage.f +++ b/lapack-netlib/TESTING/LIN/zdrvhe_aa_2stage.f @@ -400,9 +400,9 @@ SUBROUTINE ZDRVHE_AA_2STAGE( * Factor the matrix and solve the system using ZHESV_AA. * SRNAMT = 'ZHESV_AA_2STAGE ' - LWORK = MIN(N*NB, 3*NMAX*NMAX) + LWORK = MIN( MAX( 1, N*NB ), 3*NMAX*NMAX ) CALL ZHESV_AA_2STAGE( UPLO, N, NRHS, AFAC, LDA, - $ AINV, (3*NB+1)*N, + $ AINV, MAX( 1, (3*NB+1)*N ), $ IWORK, IWORK( 1+N ), $ X, LDA, WORK, LWORK, INFO ) *