-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_resnet_torch_lightining_1.py
251 lines (187 loc) · 8.69 KB
/
model_resnet_torch_lightining_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import json
from pathlib import Path
from collections import defaultdict
from lightning.pytorch.callbacks import RichProgressBar
from PIL import Image
import torch
from torchvision.models.detection.faster_rcnn import (
fasterrcnn_resnet50_fpn,
FasterRCNN_ResNet50_FPN_Weights
)
from torch import tensor, as_tensor
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from torch.optim import SGD
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchmetrics.detection import MeanAveragePrecision
import lightning as L
from lightning.pytorch.loggers import WandbLogger
class CocoDataset(Dataset):
"""PyTorch dataset for COCO annotations."""
# adapted from https://github.com/pytorch/vision/issues/2720
def __init__(self, root, annFile, transform=None):
"""Load COCO annotation data."""
self.data_dir = Path(root)
self.transform = transform
# load the COCO annotations json
anno_file_path = annFile
with open(str(anno_file_path)) as file_obj:
self.coco_data = json.load(file_obj)
# put all of the annos into a dict where keys are image IDs to speed up retrieval
self.image_id_to_annos = defaultdict(list)
for anno in self.coco_data["annotations"]:
image_id = anno["image_id"]
self.image_id_to_annos[image_id] += [anno]
def __len__(self):
return len(self.coco_data["images"])
def __getitem__(self, index):
"""Return tuple of image and labels as torch tensors."""
image_data = self.coco_data["images"][index]
image_id = image_data["id"]
image_path = self.data_dir / image_data["file_name"]
image = Image.open(image_path)
annos = self.image_id_to_annos[image_id]
anno_data = {
"boxes": [],
"labels": [],
"area": [],
"iscrowd": [],
}
for anno in annos:
coco_bbox = anno["bbox"]
left = coco_bbox[0]
top = coco_bbox[1]
right = coco_bbox[0] + coco_bbox[2]
bottom = coco_bbox[1] + coco_bbox[3]
area = coco_bbox[2] * coco_bbox[3]
anno_data["boxes"].append([left, top, right, bottom])
anno_data["labels"].append(anno["category_id"])
anno_data["area"].append(area)
anno_data["iscrowd"].append(anno["iscrowd"])
target = {
"boxes": as_tensor(anno_data["boxes"], dtype=torch.float32),
"labels": as_tensor(anno_data["labels"], dtype=torch.int64),
"image_id": tensor([image_id]),
"area": as_tensor(anno_data["area"], dtype=torch.float32),
"iscrowd": as_tensor(anno_data["iscrowd"], dtype=torch.int64),
}
# if self.transform:
# input_data = self.transform(input_data)
if self.transform is not None:
image = self.transform(image)
return image, target
class FasterRCNN_ResNet50_Lightning(L.LightningModule):
# transform = transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
# transforms.Resize(size=(800,), max_size=1333),])
def __init__(self):
super().__init__()
self.model = fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
num_classes = 6
self.model.roi_heads.box_predictor.cls_score = torch.nn.Linear(
in_features=self.model.roi_heads.box_predictor.cls_score.in_features,
out_features=num_classes,
bias=True)
self.model.roi_heads.box_predictor.bbox_pred = torch.nn.Linear(
in_features=self.model.roi_heads.box_predictor.bbox_pred.in_features,
out_features=num_classes * 4,
bias=True)
# in_features = self.model.roi_heads.box_predictor.cls_score.in_features
# self.model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
# self.learning_rate = 1e-3
self.train_map = MeanAveragePrecision(box_format='xyxy', iou_type='bbox')
self.val_map = MeanAveragePrecision(box_format='xyxy', iou_type='bbox')
def forward(self, x):
return self.model(x)
def training_step(self, batch, batch_idx):
images, targets = batch
loss_dict = self.model(images, targets)
total_loss = sum(loss for loss in loss_dict.values())
# predictions = self.model(images)
# self.val_map.update(predictions, targets)
# self.log('train_loss', total_loss, on_step=False, on_epoch=True, prog_bar=True, batch_size=batch_size)
self.log('train_loss', total_loss, on_step=True, on_epoch=True, batch_size=len(batch))
# self.log('train_loss', total_loss, on_step=False, on_epoch=True)
# # self.log('loss_step', loss, on_step=True, on_epoch=False)
# if batch_idx % 5 == 0:
# self.validation_step()
# self.model.eval()
# if batch_idx % 100 == 0:
# self.logger.history['loss_step']
return total_loss
# def on_training_epoch_end(self):
# # Log mAP for training set
# train_map_value = self.train_map.compute()['map_50']
# self.log('train_map', train_map_value, on_epoch=True, prog_bar=True)
# self.train_map.reset()
def validation_step(self, batch, batch_idx):
images, targets = batch
predictions = self.model(images)
# loss = self.model(images, targets)
self.val_map.update(predictions, targets)
def on_validation_epoch_end(self):
self.log('val_map', self.val_map.compute()['map_50'],
on_step=False, on_epoch=True, prog_bar=True)
self.val_map.reset()
# def predict_step(self, batch, batch_idx, dataloader_idx=0):
# x, y = batch
# y_hat = self.model(x)
# return y_hat
# def configure_optimizers(self):
# optimizer = torch.optim.SGD(self.model.parameters(), lr=self.learning_rate, momentum=0.95, weight_decay=1e-5, nesterov=True)
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=6, eta_min=0, verbose=True)
# return [optimizer], [scheduler]
def configure_optimizers(self):
params = [p for p in self.model.parameters() if p.requires_grad]
# return SGD(params, lr=0.02)
return SGD(
params,
lr=0.0001,
momentum=0.9,
weight_decay=0.0001)
preprocess = FasterRCNN_ResNet50_FPN_Weights.DEFAULT.transforms()
def collate_fn(batch):
"""Define a collate function to handle batches."""
return tuple(zip(*batch))
class CocoLightningDataModule(L.LightningDataModule):
def __init__(self, batch_size, num_workers):
super().__init__()
self.save_hyperparameters()
# self.csv_path = csv_path
self.batch_size = batch_size
self.num_workers = num_workers
@staticmethod
def _collate_fn(batch):
"""Define a collate function to handle batches."""
return tuple(zip(*batch))
def train_dataloader(self):
train_dataset = CocoDataset(root="/home/michael/sardet100k/dataset/train",
annFile="/home/michael/sardet100k/dataset/Annotations_corrected/train.json",
transform=preprocess)
return DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True,
num_workers=self.num_workers, collate_fn=self._collate_fn)
def val_dataloader(self):
val_dataset = CocoDataset(root="/home/michael/sardet100k/dataset/val",
annFile="/home/michael/sardet100k/dataset/Annotations_corrected/val.json",
transform=preprocess)
return DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False,
num_workers=self.num_workers, collate_fn=self._collate_fn)
def train_faster_rcnn():
torch.set_float32_matmul_precision('medium')
wandb_logger = WandbLogger(log_model="all")
data = CocoLightningDataModule(batch_size=2, num_workers=14)
model = FasterRCNN_ResNet50_Lightning()
trainer = L.Trainer(max_epochs=12,
accelerator='gpu',
num_nodes=1,
# limit_train_batches=.001,
# limit_val_batches=.001,
# log_every_n_steps=1,
val_check_interval=0.2,
callbacks=[RichProgressBar(leave=True)],
logger=wandb_logger
)
trainer.fit(model, data)
if __name__ == '__main__':
train_faster_rcnn()