-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_net.py
executable file
·182 lines (158 loc) · 6.06 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import argparse
import os
import random
import torch
from torch import optim
import torch.multiprocessing as mp
mp.set_sharing_strategy('file_system')
import sys
sys.path.append('./')
from mmn.data import make_data_loader
from mmn.config import cfg
from mmn.engine.inference import inference
from mmn.engine.trainer import do_train
from mmn.modeling import build_model
from mmn.utils.checkpoint import MmnCheckpointer
from mmn.utils.comm import synchronize, get_rank
#from mmn.utils.imports import import_file
from mmn.utils.logger import setup_logger
from mmn.utils.miscellaneous import mkdir, save_config
def train(cfg, local_rank, distributed):
model = build_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
if distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank], output_device=local_rank,
# this should be removed if we update BatchNorm stats
broadcast_buffers=False, find_unused_parameters=True
)
learning_rate = cfg.SOLVER.LR * 1.0
data_loader = make_data_loader(cfg, is_train=True, is_distributed=distributed)
bert_params = []
base_params = []
for name, param in model.named_parameters():
if "bert" in name:
bert_params.append(param)
else:
base_params.append(param)
param_dict = {'bert': bert_params, 'base': base_params}
optimizer = optim.AdamW([{'params': base_params},
{'params': bert_params, 'lr': learning_rate * 0.1}], lr=learning_rate, betas=(0.9, 0.99), weight_decay=1e-5)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=cfg.SOLVER.MILESTONES, gamma=0.1)
output_dir = cfg.OUTPUT_DIR
save_to_disk = get_rank() == 0
checkpointer = MmnCheckpointer(cfg, model, optimizer, scheduler, output_dir, save_to_disk)
arguments = {"epoch": 1}
if cfg.SOLVER.RESUME:
arguments = {"epoch": cfg.SOLVER.RESUME_EPOCH}
if cfg.DATASETS.NAME == "activitynet":
weight_path = './outputs/%s_activitynet_64x64_k9l4/%s_model_%de.pth' % (cfg.MODEL.MMN.FEAT2D.NAME, cfg.MODEL.MMN.FEAT2D.NAME, cfg.SOLVER.RESUME_EPOCH - 1)
elif cfg.DATASETS.NAME == "tacos":
weight_path = './outputs/%s_tacos_128x128_k5l8/%s_model_%de.pth' % (cfg.MODEL.MMN.FEAT2D.NAME, cfg.MODEL.MMN.FEAT2D.NAME, cfg.SOLVER.RESUME_EPOCH - 1)
elif cfg.DATASETS.NAME == "charades":
weight_path = './outputs/%s_charades_16x16_k5l8/%s_model_%de.pth' % (cfg.MODEL.MMN.FEAT2D.NAME, cfg.MODEL.MMN.FEAT2D.NAME, cfg.SOLVER.RESUME_EPOCH - 1)
else:
raise NotImplementedError('No checkpoints for such %s dataset' % cfg.DATASETS.NAME)
weight_file = torch.load(weight_path, map_location=torch.device("cpu"))
model.load_state_dict(weight_file.pop("model"))
for _ in range(1, cfg.SOLVER.RESUME_EPOCH):
scheduler.step()
test_period = cfg.SOLVER.TEST_PERIOD
if test_period > 0:
data_loader_val = make_data_loader(cfg, is_train=False, is_distributed=distributed, is_for_period=True)
else:
data_loader_val = None
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
do_train(
cfg,
model,
data_loader,
data_loader_val,
optimizer,
scheduler,
checkpointer,
device,
checkpoint_period,
test_period,
arguments,
param_dict
)
return model
def run_test(cfg, model, distributed):
if distributed:
model = model.module
torch.cuda.empty_cache()
dataset_names = cfg.DATASETS.TEST
data_loaders_val = make_data_loader(cfg, is_train=False, is_distributed=distributed)
for dataset_name, data_loader_val in zip(dataset_names, data_loaders_val):
inference(
cfg,
model,
data_loader_val,
dataset_name=dataset_name,
nms_thresh=cfg.TEST.NMS_THRESH,
device=cfg.MODEL.DEVICE,
)
synchronize()
def main():
parser = argparse.ArgumentParser(description="Mutual Matching Network")
parser.add_argument(
"--config-file",
default="configs/pool_128x128_k5l8_tacos.yaml",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
seed = 25285
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = True
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("mmn", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
output_config_path = os.path.join(cfg.OUTPUT_DIR, 'config.yml')
logger.info("Saving config into: {}".format(output_config_path))
# save overloaded model config in the output directory
save_config(cfg, output_config_path)
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
run_test(cfg, model, args.distributed)
if __name__ == "__main__":
#mp.set_start_method('spawn')
#
main()