forked from cameron314/concurrentqueue
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblockingconcurrentqueue.h
582 lines (525 loc) · 23 KB
/
blockingconcurrentqueue.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
// Provides an efficient blocking version of moodycamel::ConcurrentQueue.
// ©2015-2020 Cameron Desrochers. Distributed under the terms of the simplified
// BSD license, available at the top of concurrentqueue.h.
// Also dual-licensed under the Boost Software License (see LICENSE.md)
// Uses Jeff Preshing's semaphore implementation (under the terms of its
// separate zlib license, see lightweightsemaphore.h).
#pragma once
#include "concurrentqueue.h"
#include "lightweightsemaphore.h"
#include <type_traits>
#include <cerrno>
#include <memory>
#include <chrono>
#include <ctime>
namespace moodycamel
{
// This is a blocking version of the queue. It has an almost identical interface to
// the normal non-blocking version, with the addition of various wait_dequeue() methods
// and the removal of producer-specific dequeue methods.
template<typename T, typename Traits = ConcurrentQueueDefaultTraits>
class BlockingConcurrentQueue
{
private:
typedef ::moodycamel::ConcurrentQueue<T, Traits> ConcurrentQueue;
typedef ::moodycamel::LightweightSemaphore LightweightSemaphore;
public:
typedef typename ConcurrentQueue::producer_token_t producer_token_t;
typedef typename ConcurrentQueue::consumer_token_t consumer_token_t;
typedef typename ConcurrentQueue::index_t index_t;
typedef typename ConcurrentQueue::size_t size_t;
typedef typename std::make_signed<size_t>::type ssize_t;
static const size_t BLOCK_SIZE = ConcurrentQueue::BLOCK_SIZE;
static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = ConcurrentQueue::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD;
static const size_t EXPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::EXPLICIT_INITIAL_INDEX_SIZE;
static const size_t IMPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::IMPLICIT_INITIAL_INDEX_SIZE;
static const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE = ConcurrentQueue::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE;
static const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = ConcurrentQueue::EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE;
static const size_t MAX_SUBQUEUE_SIZE = ConcurrentQueue::MAX_SUBQUEUE_SIZE;
public:
// Creates a queue with at least `capacity` element slots; note that the
// actual number of elements that can be inserted without additional memory
// allocation depends on the number of producers and the block size (e.g. if
// the block size is equal to `capacity`, only a single block will be allocated
// up-front, which means only a single producer will be able to enqueue elements
// without an extra allocation -- blocks aren't shared between producers).
// This method is not thread safe -- it is up to the user to ensure that the
// queue is fully constructed before it starts being used by other threads (this
// includes making the memory effects of construction visible, possibly with a
// memory barrier).
explicit BlockingConcurrentQueue(size_t capacity = 6 * BLOCK_SIZE)
: inner(capacity), sema(create<LightweightSemaphore, ssize_t, int>(0, (int)Traits::MAX_SEMA_SPINS), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>)
{
assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member");
if (!sema) {
MOODYCAMEL_THROW(std::bad_alloc());
}
}
BlockingConcurrentQueue(size_t minCapacity, size_t maxExplicitProducers, size_t maxImplicitProducers)
: inner(minCapacity, maxExplicitProducers, maxImplicitProducers), sema(create<LightweightSemaphore, ssize_t, int>(0, (int)Traits::MAX_SEMA_SPINS), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>)
{
assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member");
if (!sema) {
MOODYCAMEL_THROW(std::bad_alloc());
}
}
// Disable copying and copy assignment
BlockingConcurrentQueue(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
BlockingConcurrentQueue& operator=(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
// Moving is supported, but note that it is *not* a thread-safe operation.
// Nobody can use the queue while it's being moved, and the memory effects
// of that move must be propagated to other threads before they can use it.
// Note: When a queue is moved, its tokens are still valid but can only be
// used with the destination queue (i.e. semantically they are moved along
// with the queue itself).
BlockingConcurrentQueue(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT
: inner(std::move(other.inner)), sema(std::move(other.sema))
{ }
inline BlockingConcurrentQueue& operator=(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT
{
return swap_internal(other);
}
// Swaps this queue's state with the other's. Not thread-safe.
// Swapping two queues does not invalidate their tokens, however
// the tokens that were created for one queue must be used with
// only the swapped queue (i.e. the tokens are tied to the
// queue's movable state, not the object itself).
inline void swap(BlockingConcurrentQueue& other) MOODYCAMEL_NOEXCEPT
{
swap_internal(other);
}
private:
BlockingConcurrentQueue& swap_internal(BlockingConcurrentQueue& other)
{
if (this == &other) {
return *this;
}
inner.swap(other.inner);
sema.swap(other.sema);
return *this;
}
public:
// Enqueues a single item (by copying it).
// Allocates memory if required. Only fails if memory allocation fails (or implicit
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0,
// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
// Thread-safe.
inline bool enqueue(T const& item)
{
if ((details::likely)(inner.enqueue(item))) {
sema->signal();
return true;
}
return false;
}
// Enqueues a single item (by moving it, if possible).
// Allocates memory if required. Only fails if memory allocation fails (or implicit
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0,
// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
// Thread-safe.
inline bool enqueue(T&& item)
{
if ((details::likely)(inner.enqueue(std::move(item)))) {
sema->signal();
return true;
}
return false;
}
// Enqueues a single item (by copying it) using an explicit producer token.
// Allocates memory if required. Only fails if memory allocation fails (or
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
// Thread-safe.
inline bool enqueue(producer_token_t const& token, T const& item)
{
if ((details::likely)(inner.enqueue(token, item))) {
sema->signal();
return true;
}
return false;
}
// Enqueues a single item (by moving it, if possible) using an explicit producer token.
// Allocates memory if required. Only fails if memory allocation fails (or
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
// Thread-safe.
inline bool enqueue(producer_token_t const& token, T&& item)
{
if ((details::likely)(inner.enqueue(token, std::move(item)))) {
sema->signal();
return true;
}
return false;
}
// Enqueues several items.
// Allocates memory if required. Only fails if memory allocation fails (or
// implicit production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
// is 0, or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
// Note: Use std::make_move_iterator if the elements should be moved instead of copied.
// Thread-safe.
template<typename It>
inline bool enqueue_bulk(It itemFirst, size_t count)
{
if ((details::likely)(inner.enqueue_bulk(std::forward<It>(itemFirst), count))) {
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
return true;
}
return false;
}
// Enqueues several items using an explicit producer token.
// Allocates memory if required. Only fails if memory allocation fails
// (or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
// Note: Use std::make_move_iterator if the elements should be moved
// instead of copied.
// Thread-safe.
template<typename It>
inline bool enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count)
{
if ((details::likely)(inner.enqueue_bulk(token, std::forward<It>(itemFirst), count))) {
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
return true;
}
return false;
}
// Enqueues a single item (by copying it).
// Does not allocate memory. Fails if not enough room to enqueue (or implicit
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
// is 0).
// Thread-safe.
inline bool try_enqueue(T const& item)
{
if (inner.try_enqueue(item)) {
sema->signal();
return true;
}
return false;
}
// Enqueues a single item (by moving it, if possible).
// Does not allocate memory (except for one-time implicit producer).
// Fails if not enough room to enqueue (or implicit production is
// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
// Thread-safe.
inline bool try_enqueue(T&& item)
{
if (inner.try_enqueue(std::move(item))) {
sema->signal();
return true;
}
return false;
}
// Enqueues a single item (by copying it) using an explicit producer token.
// Does not allocate memory. Fails if not enough room to enqueue.
// Thread-safe.
inline bool try_enqueue(producer_token_t const& token, T const& item)
{
if (inner.try_enqueue(token, item)) {
sema->signal();
return true;
}
return false;
}
// Enqueues a single item (by moving it, if possible) using an explicit producer token.
// Does not allocate memory. Fails if not enough room to enqueue.
// Thread-safe.
inline bool try_enqueue(producer_token_t const& token, T&& item)
{
if (inner.try_enqueue(token, std::move(item))) {
sema->signal();
return true;
}
return false;
}
// Enqueues several items.
// Does not allocate memory (except for one-time implicit producer).
// Fails if not enough room to enqueue (or implicit production is
// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
// Note: Use std::make_move_iterator if the elements should be moved
// instead of copied.
// Thread-safe.
template<typename It>
inline bool try_enqueue_bulk(It itemFirst, size_t count)
{
if (inner.try_enqueue_bulk(std::forward<It>(itemFirst), count)) {
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
return true;
}
return false;
}
// Enqueues several items using an explicit producer token.
// Does not allocate memory. Fails if not enough room to enqueue.
// Note: Use std::make_move_iterator if the elements should be moved
// instead of copied.
// Thread-safe.
template<typename It>
inline bool try_enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count)
{
if (inner.try_enqueue_bulk(token, std::forward<It>(itemFirst), count)) {
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
return true;
}
return false;
}
// Attempts to dequeue from the queue.
// Returns false if all producer streams appeared empty at the time they
// were checked (so, the queue is likely but not guaranteed to be empty).
// Never allocates. Thread-safe.
template<typename U>
inline bool try_dequeue(U& item)
{
if (sema->tryWait()) {
while (!inner.try_dequeue(item)) {
continue;
}
return true;
}
return false;
}
// Attempts to dequeue from the queue using an explicit consumer token.
// Returns false if all producer streams appeared empty at the time they
// were checked (so, the queue is likely but not guaranteed to be empty).
// Never allocates. Thread-safe.
template<typename U>
inline bool try_dequeue(consumer_token_t& token, U& item)
{
if (sema->tryWait()) {
while (!inner.try_dequeue(token, item)) {
continue;
}
return true;
}
return false;
}
// Attempts to dequeue several elements from the queue.
// Returns the number of items actually dequeued.
// Returns 0 if all producer streams appeared empty at the time they
// were checked (so, the queue is likely but not guaranteed to be empty).
// Never allocates. Thread-safe.
template<typename It>
inline size_t try_dequeue_bulk(It itemFirst, size_t max)
{
size_t count = 0;
max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
while (count != max) {
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
}
return count;
}
// Attempts to dequeue several elements from the queue using an explicit consumer token.
// Returns the number of items actually dequeued.
// Returns 0 if all producer streams appeared empty at the time they
// were checked (so, the queue is likely but not guaranteed to be empty).
// Never allocates. Thread-safe.
template<typename It>
inline size_t try_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max)
{
size_t count = 0;
max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
while (count != max) {
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
}
return count;
}
// Blocks the current thread until there's something to dequeue, then
// dequeues it.
// Never allocates. Thread-safe.
template<typename U>
inline void wait_dequeue(U& item)
{
while (!sema->wait()) {
continue;
}
while (!inner.try_dequeue(item)) {
continue;
}
}
// Blocks the current thread until either there's something to dequeue
// or the timeout (specified in microseconds) expires. Returns false
// without setting `item` if the timeout expires, otherwise assigns
// to `item` and returns true.
// Using a negative timeout indicates an indefinite timeout,
// and is thus functionally equivalent to calling wait_dequeue.
// Never allocates. Thread-safe.
template<typename U>
inline bool wait_dequeue_timed(U& item, std::int64_t timeout_usecs)
{
if (!sema->wait(timeout_usecs)) {
return false;
}
while (!inner.try_dequeue(item)) {
continue;
}
return true;
}
// Blocks the current thread until either there's something to dequeue
// or the timeout expires. Returns false without setting `item` if the
// timeout expires, otherwise assigns to `item` and returns true.
// Never allocates. Thread-safe.
template<typename U, typename Rep, typename Period>
inline bool wait_dequeue_timed(U& item, std::chrono::duration<Rep, Period> const& timeout)
{
return wait_dequeue_timed(item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
}
// Blocks the current thread until there's something to dequeue, then
// dequeues it using an explicit consumer token.
// Never allocates. Thread-safe.
template<typename U>
inline void wait_dequeue(consumer_token_t& token, U& item)
{
while (!sema->wait()) {
continue;
}
while (!inner.try_dequeue(token, item)) {
continue;
}
}
// Blocks the current thread until either there's something to dequeue
// or the timeout (specified in microseconds) expires. Returns false
// without setting `item` if the timeout expires, otherwise assigns
// to `item` and returns true.
// Using a negative timeout indicates an indefinite timeout,
// and is thus functionally equivalent to calling wait_dequeue.
// Never allocates. Thread-safe.
template<typename U>
inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::int64_t timeout_usecs)
{
if (!sema->wait(timeout_usecs)) {
return false;
}
while (!inner.try_dequeue(token, item)) {
continue;
}
return true;
}
// Blocks the current thread until either there's something to dequeue
// or the timeout expires. Returns false without setting `item` if the
// timeout expires, otherwise assigns to `item` and returns true.
// Never allocates. Thread-safe.
template<typename U, typename Rep, typename Period>
inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::chrono::duration<Rep, Period> const& timeout)
{
return wait_dequeue_timed(token, item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
}
// Attempts to dequeue several elements from the queue.
// Returns the number of items actually dequeued, which will
// always be at least one (this method blocks until the queue
// is non-empty) and at most max.
// Never allocates. Thread-safe.
template<typename It>
inline size_t wait_dequeue_bulk(It itemFirst, size_t max)
{
size_t count = 0;
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
while (count != max) {
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
}
return count;
}
// Attempts to dequeue several elements from the queue.
// Returns the number of items actually dequeued, which can
// be 0 if the timeout expires while waiting for elements,
// and at most max.
// Using a negative timeout indicates an indefinite timeout,
// and is thus functionally equivalent to calling wait_dequeue_bulk.
// Never allocates. Thread-safe.
template<typename It>
inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::int64_t timeout_usecs)
{
size_t count = 0;
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs);
while (count != max) {
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
}
return count;
}
// Attempts to dequeue several elements from the queue.
// Returns the number of items actually dequeued, which can
// be 0 if the timeout expires while waiting for elements,
// and at most max.
// Never allocates. Thread-safe.
template<typename It, typename Rep, typename Period>
inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout)
{
return wait_dequeue_bulk_timed<It&>(itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
}
// Attempts to dequeue several elements from the queue using an explicit consumer token.
// Returns the number of items actually dequeued, which will
// always be at least one (this method blocks until the queue
// is non-empty) and at most max.
// Never allocates. Thread-safe.
template<typename It>
inline size_t wait_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max)
{
size_t count = 0;
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
while (count != max) {
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
}
return count;
}
// Attempts to dequeue several elements from the queue using an explicit consumer token.
// Returns the number of items actually dequeued, which can
// be 0 if the timeout expires while waiting for elements,
// and at most max.
// Using a negative timeout indicates an indefinite timeout,
// and is thus functionally equivalent to calling wait_dequeue_bulk.
// Never allocates. Thread-safe.
template<typename It>
inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::int64_t timeout_usecs)
{
size_t count = 0;
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs);
while (count != max) {
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
}
return count;
}
// Attempts to dequeue several elements from the queue using an explicit consumer token.
// Returns the number of items actually dequeued, which can
// be 0 if the timeout expires while waiting for elements,
// and at most max.
// Never allocates. Thread-safe.
template<typename It, typename Rep, typename Period>
inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout)
{
return wait_dequeue_bulk_timed<It&>(token, itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
}
// Returns an estimate of the total number of elements currently in the queue. This
// estimate is only accurate if the queue has completely stabilized before it is called
// (i.e. all enqueue and dequeue operations have completed and their memory effects are
// visible on the calling thread, and no further operations start while this method is
// being called).
// Thread-safe.
inline size_t size_approx() const
{
return (size_t)sema->availableApprox();
}
// Returns true if the underlying atomic variables used by
// the queue are lock-free (they should be on most platforms).
// Thread-safe.
static bool is_lock_free()
{
return ConcurrentQueue::is_lock_free();
}
private:
template<typename U, typename A1, typename A2>
static inline U* create(A1&& a1, A2&& a2)
{
void* p = (Traits::malloc)(sizeof(U));
return p != nullptr ? new (p) U(std::forward<A1>(a1), std::forward<A2>(a2)) : nullptr;
}
template<typename U>
static inline void destroy(U* p)
{
if (p != nullptr) {
p->~U();
}
(Traits::free)(p);
}
private:
ConcurrentQueue inner;
std::unique_ptr<LightweightSemaphore, void (*)(LightweightSemaphore*)> sema;
};
template<typename T, typename Traits>
inline void swap(BlockingConcurrentQueue<T, Traits>& a, BlockingConcurrentQueue<T, Traits>& b) MOODYCAMEL_NOEXCEPT
{
a.swap(b);
}
} // end namespace moodycamel