We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
原因:keras.backend.get_value函数会添加新的节点到tf的图中;在每次循环图片预测时导致了tf的图越来越大,内存泄露。 参照: https://blog.csdn.net/mingshili/article/details/81941677 修改predict.py里的CTC解码部分,可解决。 每次重置session会打印tensorflow信息,比较难看,通过在predict.py开头添加下面关闭控制台输出的tensorflow信息: import os os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
The text was updated successfully, but these errors were encountered:
二次更新,前面方法视乎还是有问题,找到下面最终方法解决: https://github.com/YCG09/chinese_ocr/blob/master/densenet/model.py
Sorry, something went wrong.
No branches or pull requests
原因:keras.backend.get_value函数会添加新的节点到tf的图中;在每次循环图片预测时导致了tf的图越来越大,内存泄露。
参照:
https://blog.csdn.net/mingshili/article/details/81941677
修改predict.py里的CTC解码部分,可解决。
每次重置session会打印tensorflow信息,比较难看,通过在predict.py开头添加下面关闭控制台输出的tensorflow信息:
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
The text was updated successfully, but these errors were encountered: