-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster_calculation.py
422 lines (400 loc) · 16.8 KB
/
cluster_calculation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# this function originates from my AMULATOR_offline
# https://github.com/LangeTo/AMULATOR_offline/blob/main/couplex_calculations.py
import pandas as pd
from helpers import add_pos_par
def calculate_clusters(df):
# positives_ab1 or positives_ab2 are number of single positive partitions
# the number of double postiive partitions of the respective colorpair
# needs to be added, this is done in the couplex calculation funciton before
# actually calculating the number of couplexes
# if two channels used in dPCR
if len(df["Group"].values[0]) == 2:
# extract values for ++, +- and -+ in separate columns
df_extrac = df[df["Group"] == "++"].copy()
channel_ab1 = df[df["Group"] == "+-"]["Count categories"].tolist()
channel_ab2 = df[df["Group"] == "-+"]["Count categories"].tolist()
df_extrac["positives_ab1"] = channel_ab1
df_extrac["positives_ab2"] = channel_ab2
# add corresponding colorpair
colors = df["Categories"].values[0]
color_ab1, color_ab2 = colors.split("-")
df_extrac["colorpair"] = color_ab1[0] + color_ab2[0]
# add corresponding antibodies
# this only works, when the antibodies are specified as targets of the reaction mix in the QIAcuity Software Suite
antibodies = df["Target names"].values[0]
ab1, ab2 = antibodies.split(",")
df_extrac["antibody1"] = ab1
df_extrac["antibody2"] = ab2
# if three channels used in dPCR
elif len(df["Group"].values[0]) == 3:
# get colors available
colors = df["Categories"].values[0]
color_one, color_two, color_three = colors.split("-")
# get the antibodies available
antibodies = df["Target names"].values[0]
ab1, ab2, ab3 = antibodies.split(",")
# extract values for ++-, +-- and -+- in separate columns (first colorpair)
df_extrac1 = df[df["Group"] == "++-"].copy()
# add additional double positives from other combinations
for pos_group in ["+++"]:
df_extrac1["Count categories"] = df_extrac1.apply(
lambda row: add_pos_par(
row["Well"],
row["Count categories"],
df[df["Group"] == pos_group],
),
axis=1,
)
df_extrac1["positives_ab1"] = 0
df_extrac1["positives_ab2"] = 0
# add single positives to dataframe
# they are single positive as long as the second color of the colorpair is negative
for left, right in [["+--", "-+-"], ["+-+", "-++"]]:
df_extrac1["positives_ab1"] = df_extrac1.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab1"], df[df["Group"] == left]
),
axis=1,
)
df_extrac1["positives_ab2"] = df_extrac1.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab2"], df[df["Group"] == right]
),
axis=1,
)
# add color to dataframe
df_extrac1["colorpair"] = color_one[0] + color_two[0]
# add the antibodies to the dataframe
df_extrac1["antibody1"] = ab1
df_extrac1["antibody2"] = ab2
# extract values for +-+, +-- and --+ in separate columns (second colorpair)
df_extrac2 = df[df["Group"] == "+-+"].copy()
# add additional double positives from other combinations
for pos_group in ["+++"]:
df_extrac2["Count categories"] = df_extrac2.apply(
lambda row: add_pos_par(
row["Well"],
row["Count categories"],
df[df["Group"] == pos_group],
),
axis=1,
)
df_extrac2["positives_ab1"] = 0
df_extrac2["positives_ab2"] = 0
# add single positives to dataframe
# they are single positive as long as the second color of the colorpair is negative
for left, right in [["+--", "--+"], ["++-", "-++"]]:
df_extrac2["positives_ab1"] = df_extrac2.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab1"], df[df["Group"] == left]
),
axis=1,
)
df_extrac2["positives_ab2"] = df_extrac2.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab2"], df[df["Group"] == right]
),
axis=1,
)
# add color to dataframe
df_extrac2["colorpair"] = color_one[0] + color_three[0]
# add the antibodies to the dataframe
df_extrac2["antibody1"] = ab1
df_extrac2["antibody2"] = ab3
# extract values for -++, -+- and --+ in separate columns (third colorpair)
df_extrac3 = df[df["Group"] == "-++"].copy()
# add additional double positives from other combinations
for pos_group in ["+++"]:
df_extrac3["Count categories"] = df_extrac3.apply(
lambda row: add_pos_par(
row["Well"],
row["Count categories"],
df[df["Group"] == pos_group],
),
axis=1,
)
df_extrac3["positives_ab1"] = 0
df_extrac3["positives_ab2"] = 0
# add single positives to dataframe
# they are single positive as long as the second color of the colorpair is negative
for left, right in [["-+-", "--+"], ["++-", "+-+"]]:
df_extrac3["positives_ab1"] = df_extrac3.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab1"], df[df["Group"] == left]
),
axis=1,
)
df_extrac3["positives_ab2"] = df_extrac3.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab2"], df[df["Group"] == right]
),
axis=1,
)
# add color to dataframe
df_extrac3["colorpair"] = color_two[0] + color_three[0]
# add the antibodies to the dataframe
df_extrac3["antibody1"] = ab2
df_extrac3["antibody2"] = ab3
# combine all colorpairs into one dataframe
extrac_list = [df_extrac1, df_extrac2, df_extrac3]
df_extrac = pd.concat(extrac_list, ignore_index=True)
# if four channels used in dPCR
elif len(df["Group"].values[0]) == 4:
# get colors available
colors = df["Categories"].values[0]
color_one, color_two, color_three, color_four = colors.split("-")
# get the antibodies available
antibodies = df["Target names"].values[0]
ab1, ab2, ab3, ab4 = antibodies.split(",")
# extract values for ++--, +--- and -+-- in separate columns (first colorpair)
df_extrac1 = df[df["Group"] == "++--"].copy()
# add additional double positives from other combinations
for pos_group in ["++++", "++-+", "+++-"]:
df_extrac1["Count categories"] = df_extrac1.apply(
lambda row: add_pos_par(
row["Well"],
row["Count categories"],
df[df["Group"] == pos_group],
),
axis=1,
)
df_extrac1["positives_ab1"] = 0
df_extrac1["positives_ab2"] = 0
# add single positives to dataframe
# they are single positive as long as the second color of the colorpair is negative
for left, right in [
["+---", "-+--"],
["+-++", "-+++"],
["+--+", "-+-+"],
["+-+-", "-++-"],
]:
df_extrac1["positives_ab1"] = df_extrac1.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab1"], df[df["Group"] == left]
),
axis=1,
)
df_extrac1["positives_ab2"] = df_extrac1.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab2"], df[df["Group"] == right]
),
axis=1,
)
# add color to dataframe
df_extrac1["colorpair"] = color_one[0] + color_two[0]
# add the antibodies to the dataframe
df_extrac1["antibody1"] = ab1
df_extrac1["antibody2"] = ab2
# extract values for +-+-, +--- and --+- in separate columns (second colorpair)
df_extrac2 = df[df["Group"] == "+-+-"].copy()
# add additional double positives from other combinations
for pos_group in ["++++", "+-++", "+++-"]:
df_extrac2["Count categories"] = df_extrac2.apply(
lambda row: add_pos_par(
row["Well"],
row["Count categories"],
df[df["Group"] == pos_group],
),
axis=1,
)
df_extrac2["positives_ab1"] = 0
df_extrac2["positives_ab2"] = 0
# add single positives to dataframe
# they are single positive as long as the third color of the colorpair is negative
for left, right in [
["+---", "--+-"],
["++-+", "-+++"],
["+--+", "-++-"],
["++--", "--++"],
]:
df_extrac2["positives_ab1"] = df_extrac2.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab1"], df[df["Group"] == left]
),
axis=1,
)
df_extrac2["positives_ab2"] = df_extrac2.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab2"], df[df["Group"] == right]
),
axis=1,
)
# add color to dataframe
df_extrac2["colorpair"] = color_one[0] + color_three[0]
# add the antibodies to the dataframe
df_extrac2["antibody1"] = ab1
df_extrac2["antibody2"] = ab3
# extract values for +--+, +--- and ---+ in separate columns (third colorpair)
df_extrac3 = df[df["Group"] == "+--+"].copy()
# add additional double positives from other combinations
for pos_group in ["++++", "+-++", "++-+"]:
df_extrac3["Count categories"] = df_extrac3.apply(
lambda row: add_pos_par(
row["Well"],
row["Count categories"],
df[df["Group"] == pos_group],
),
axis=1,
)
df_extrac3["positives_ab1"] = 0
df_extrac3["positives_ab2"] = 0
# add single positives to dataframe
# they are single positive as long as the third color of the colorpair is negative
for left, right in [
["+---", "---+"],
["+++-", "--++"],
["+-+-", "-+++"],
["++--", "-+-+"],
]:
df_extrac3["positives_ab1"] = df_extrac3.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab1"], df[df["Group"] == left]
),
axis=1,
)
df_extrac3["positives_ab2"] = df_extrac3.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab2"], df[df["Group"] == right]
),
axis=1,
)
# add color to dataframe
df_extrac3["colorpair"] = color_one[0] + color_four[0]
# add the antibodies to the dataframe
df_extrac3["antibody1"] = ab1
df_extrac3["antibody2"] = ab4
# extract values for -++-, -+-- and --+- in separate columns (fourth colorpair)
df_extrac4 = df[df["Group"] == "-++-"].copy()
# add additional double positives from other combinations
for pos_group in ["++++", "-+++", "+++-"]:
df_extrac4["Count categories"] = df_extrac4.apply(
lambda row: add_pos_par(
row["Well"],
row["Count categories"],
df[df["Group"] == pos_group],
),
axis=1,
)
df_extrac4["positives_ab1"] = 0
df_extrac4["positives_ab2"] = 0
# add single positives to dataframe
# they are single positive as long as the third color of the colorpair is negative
for left, right in [
["-+--", "--+-"],
["++--", "+-++"],
["++-+", "+-+-"],
["-+-+", "--++"],
]:
df_extrac4["positives_ab1"] = df_extrac4.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab1"], df[df["Group"] == left]
),
axis=1,
)
df_extrac4["positives_ab2"] = df_extrac4.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab2"], df[df["Group"] == right]
),
axis=1,
)
# add color to dataframe
df_extrac4["colorpair"] = color_two[0] + color_three[0]
# add the antibodies to the dataframe
df_extrac4["antibody1"] = ab2
df_extrac4["antibody2"] = ab3
# extract values for -+-+, -+-- and ---+ in separate columns (fifth colorpair)
df_extrac5 = df[df["Group"] == "-+-+"].copy()
# add additional double positives from other combinations
for pos_group in ["++++", "-+++", "++-+"]:
df_extrac5["Count categories"] = df_extrac5.apply(
lambda row: add_pos_par(
row["Well"],
row["Count categories"],
df[df["Group"] == pos_group],
),
axis=1,
)
df_extrac5["positives_ab1"] = 0
df_extrac5["positives_ab2"] = 0
# add single positives to dataframe
# they are single positive as long as the third color of the colorpair is negative
for left, right in [
["-+--", "---+"],
["+++-", "+-++"],
["++--", "--++"],
["-++-", "+--+"],
]:
df_extrac5["positives_ab1"] = df_extrac5.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab1"], df[df["Group"] == left]
),
axis=1,
)
df_extrac5["positives_ab2"] = df_extrac5.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab2"], df[df["Group"] == right]
),
axis=1,
)
# add color to dataframe
df_extrac5["colorpair"] = color_two[0] + color_four[0]
# add the antibodies to the dataframe
df_extrac5["antibody1"] = ab2
df_extrac5["antibody2"] = ab4
# extract values for --++, --+- and ---+ in separate columns (fourth colorpair)
df_extrac6 = df[df["Group"] == "--++"].copy()
# add additional double positives from other combinations
for pos_group in ["++++", "-+++", "+-++"]:
df_extrac6["Count categories"] = df_extrac6.apply(
lambda row: add_pos_par(
row["Well"],
row["Count categories"],
df[df["Group"] == pos_group],
),
axis=1,
)
df_extrac6["positives_ab1"] = 0
df_extrac6["positives_ab2"] = 0
# add single positives to dataframe
# they are single positive as long as the third color of the colorpair is negative
for left, right in [
["--+-", "---+"],
["+++-", "++-+"],
["+-+-", "+--+"],
["-++-", "-+-+"],
]:
df_extrac6["positives_ab1"] = df_extrac6.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab1"], df[df["Group"] == left]
),
axis=1,
)
df_extrac6["positives_ab2"] = df_extrac6.apply(
lambda row: add_pos_par(
row["Well"], row["positives_ab2"], df[df["Group"] == right]
),
axis=1,
)
# add color to dataframe
df_extrac6["colorpair"] = color_three[0] + color_four[0]
# add the antibodies to the dataframe
df_extrac6["antibody1"] = ab4
df_extrac6["antibody2"] = ab4
extrac_list = [
df_extrac1,
df_extrac2,
df_extrac3,
df_extrac4,
df_extrac5,
df_extrac6,
]
df_extrac = pd.concat(extrac_list, ignore_index=True)
# if only one or five channels used in dPCR
else:
raise ValueError("Number of colors not 2, 3 or 4")
# join the columns of both antibodies together to get the antibody pair
# for better visualization the names are joined by \n
df_extrac["antibodies"] = df_extrac[["antibody1", "antibody2"]].agg(
"\n&\n".join, axis=1
)
return df_extrac