-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathSmaCrossStrat.py
97 lines (74 loc) · 3.08 KB
/
SmaCrossStrat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Start hyperopt with the following command:
# freqtrade hyperopt --config config.json --hyperopt-loss SharpeHyperOptLoss --strategy RsiStrat -e 500 --spaces buy sell --random-state 8711
# --- Do not remove these libs ---
import numpy as np # noqa
import pandas as pd # noqa
from functools import reduce
from pandas import DataFrame
from freqtrade.strategy import (BooleanParameter, CategoricalParameter, DecimalParameter,IStrategy, IntParameter)
# --- Add your lib to import here ---
import talib.abstract as ta
import freqtrade.vendor.qtpylib.indicators as qtpylib
# --- Generic strategy settings ---
class SmaCrossStrat(IStrategy):
INTERFACE_VERSION = 2
# Determine timeframe and # of candles before strategysignals becomes valid
timeframe = '1d'
startup_candle_count: int = 25
# Determine roi take profit and stop loss points
minimal_roi = {
"60": 0.01,
"30": 0.03,
"20": 0.04,
"0": 0.05
}
stoploss = -0.10
trailing_stop = False
use_sell_signal = True
sell_profit_only = False
sell_profit_offset = 0.0
ignore_roi_if_buy_signal = False
# --- Define spaces for the indicators ---
# Buy space
buy_quick_sma = IntParameter(5, 60, default=20, space="buy")
buy_slow_sma = IntParameter(5, 60, default=20, space="buy")
# Sell space
sell_quick_sma = IntParameter(5, 60, default=20, space="sell")
sell_slow_sma = IntParameter(5, 60, default=20, space="sell")
# --- Used indicators of strategy code ----
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
# SMA's for buying
for val in self.buy_quick_sma.range:
dataframe[f'buy_quick_sma_{val}'] = ta.SMA(dataframe, timeperiod=val)
for val in self.buy_slow_sma.range:
dataframe[f'buy_slow_sma_{val}'] = ta.SMA(dataframe, timeperiod=val)
# SMA's for selling
for val in self.sell_quick_sma.range:
dataframe[f'sell_quick_sma_{val}'] = ta.SMA(dataframe, timeperiod=val)
for val in self.sell_slow_sma.range:
dataframe[f'sell_slow_sma_{val}'] = ta.SMA(dataframe, timeperiod=val)
return dataframe
# --- Buy settings ---
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
conditions = []
conditions.append(qtpylib.crossed_above(
dataframe[f'buy_quick_sma_{self.buy_quick_sma.value}'],
dataframe[f'buy_quick_sma_{self.buy_slow_sma.value}']
))
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'buy'] = 1
return dataframe
# --- long settings ---
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
conditions = []
conditions.append(qtpylib.crossed_below(
dataframe[f'buy_quick_sma_{self.sell_quick_sma.value}'],
dataframe[f'buy_quick_sma_{self.sell_slow_sma.value}']
))
if conditions:
dataframe.loc[
reduce(lambda x, y: x & y, conditions),
'sell'] = 1
return dataframe