-
Notifications
You must be signed in to change notification settings - Fork 334
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
TypeError: can't serialize tensor(62, device='cuda:0') #46
Comments
That's because the labeled_minibatch_size is a Tensor object. |
I got the same problem, do you know how to solve it yet? |
|
You could just change the code in main function. Use .item() method to change the tensor into int |
change “labeled_minibatch_size = target_var.data.ne(NO_LABEL).sum()” to “labeled_minibatch_size = target_var.data.ne(NO_LABEL).sum().item()” |
I do not know why it happend.
/home/lts/.conda/envs/PCL/bin/python /home/lts/PycharmProject/mean-teacher/pytorch/main.py
INFO:main:=> creating model 'cifar_shakeshake26'
INFO:main:=> creating EMA model 'cifar_shakeshake26'
INFO:main:
List of model parameters:
module.conv1.weight 16 * 3 * 3 * 3 = 432
module.layer1.0.conv_a1.weight 96 * 16 * 3 * 3 = 13,824
module.layer1.0.bn_a1.weight 96 = 96
module.layer1.0.bn_a1.bias 96 = 96
module.layer1.0.conv_a2.weight 96 * 96 * 3 * 3 = 82,944
module.layer1.0.bn_a2.weight 96 = 96
module.layer1.0.bn_a2.bias 96 = 96
module.layer1.0.conv_b1.weight 96 * 16 * 3 * 3 = 13,824
module.layer1.0.bn_b1.weight 96 = 96
module.layer1.0.bn_b1.bias 96 = 96
module.layer1.0.conv_b2.weight 96 * 96 * 3 * 3 = 82,944
module.layer1.0.bn_b2.weight 96 = 96
module.layer1.0.bn_b2.bias 96 = 96
module.layer1.0.downsample.0.weight 96 * 16 * 1 * 1 = 1,536
module.layer1.0.downsample.1.weight 96 = 96
module.layer1.0.downsample.1.bias 96 = 96
module.layer1.1.conv_a1.weight 96 * 96 * 3 * 3 = 82,944
module.layer1.1.bn_a1.weight 96 = 96
module.layer1.1.bn_a1.bias 96 = 96
module.layer1.1.conv_a2.weight 96 * 96 * 3 * 3 = 82,944
module.layer1.1.bn_a2.weight 96 = 96
module.layer1.1.bn_a2.bias 96 = 96
module.layer1.1.conv_b1.weight 96 * 96 * 3 * 3 = 82,944
module.layer1.1.bn_b1.weight 96 = 96
module.layer1.1.bn_b1.bias 96 = 96
module.layer1.1.conv_b2.weight 96 * 96 * 3 * 3 = 82,944
module.layer1.1.bn_b2.weight 96 = 96
module.layer1.1.bn_b2.bias 96 = 96
module.layer1.2.conv_a1.weight 96 * 96 * 3 * 3 = 82,944
module.layer1.2.bn_a1.weight 96 = 96
module.layer1.2.bn_a1.bias 96 = 96
module.layer1.2.conv_a2.weight 96 * 96 * 3 * 3 = 82,944
module.layer1.2.bn_a2.weight 96 = 96
module.layer1.2.bn_a2.bias 96 = 96
module.layer1.2.conv_b1.weight 96 * 96 * 3 * 3 = 82,944
module.layer1.2.bn_b1.weight 96 = 96
module.layer1.2.bn_b1.bias 96 = 96
module.layer1.2.conv_b2.weight 96 * 96 * 3 * 3 = 82,944
module.layer1.2.bn_b2.weight 96 = 96
module.layer1.2.bn_b2.bias 96 = 96
module.layer1.3.conv_a1.weight 96 * 96 * 3 * 3 = 82,944
module.layer1.3.bn_a1.weight 96 = 96
module.layer1.3.bn_a1.bias 96 = 96
module.layer1.3.conv_a2.weight 96 * 96 * 3 * 3 = 82,944
module.layer1.3.bn_a2.weight 96 = 96
module.layer1.3.bn_a2.bias 96 = 96
module.layer1.3.conv_b1.weight 96 * 96 * 3 * 3 = 82,944
module.layer1.3.bn_b1.weight 96 = 96
module.layer1.3.bn_b1.bias 96 = 96
module.layer1.3.conv_b2.weight 96 * 96 * 3 * 3 = 82,944
module.layer1.3.bn_b2.weight 96 = 96
module.layer1.3.bn_b2.bias 96 = 96
module.layer2.0.conv_a1.weight 192 * 96 * 3 * 3 = 165,888
module.layer2.0.bn_a1.weight 192 = 192
module.layer2.0.bn_a1.bias 192 = 192
module.layer2.0.conv_a2.weight 192 * 192 * 3 * 3 = 331,776
module.layer2.0.bn_a2.weight 192 = 192
module.layer2.0.bn_a2.bias 192 = 192
module.layer2.0.conv_b1.weight 192 * 96 * 3 * 3 = 165,888
module.layer2.0.bn_b1.weight 192 = 192
module.layer2.0.bn_b1.bias 192 = 192
module.layer2.0.conv_b2.weight 192 * 192 * 3 * 3 = 331,776
module.layer2.0.bn_b2.weight 192 = 192
module.layer2.0.bn_b2.bias 192 = 192
module.layer2.0.downsample.conv.weight 192 * 96 * 1 * 1 = 18,432
module.layer2.0.downsample.conv.bias 192 = 192
module.layer2.0.downsample.bn.weight 192 = 192
module.layer2.0.downsample.bn.bias 192 = 192
module.layer2.1.conv_a1.weight 192 * 192 * 3 * 3 = 331,776
module.layer2.1.bn_a1.weight 192 = 192
module.layer2.1.bn_a1.bias 192 = 192
module.layer2.1.conv_a2.weight 192 * 192 * 3 * 3 = 331,776
module.layer2.1.bn_a2.weight 192 = 192
module.layer2.1.bn_a2.bias 192 = 192
module.layer2.1.conv_b1.weight 192 * 192 * 3 * 3 = 331,776
module.layer2.1.bn_b1.weight 192 = 192
module.layer2.1.bn_b1.bias 192 = 192
module.layer2.1.conv_b2.weight 192 * 192 * 3 * 3 = 331,776
module.layer2.1.bn_b2.weight 192 = 192
module.layer2.1.bn_b2.bias 192 = 192
module.layer2.2.conv_a1.weight 192 * 192 * 3 * 3 = 331,776
module.layer2.2.bn_a1.weight 192 = 192
module.layer2.2.bn_a1.bias 192 = 192
module.layer2.2.conv_a2.weight 192 * 192 * 3 * 3 = 331,776
module.layer2.2.bn_a2.weight 192 = 192
module.layer2.2.bn_a2.bias 192 = 192
module.layer2.2.conv_b1.weight 192 * 192 * 3 * 3 = 331,776
module.layer2.2.bn_b1.weight 192 = 192
module.layer2.2.bn_b1.bias 192 = 192
module.layer2.2.conv_b2.weight 192 * 192 * 3 * 3 = 331,776
module.layer2.2.bn_b2.weight 192 = 192
module.layer2.2.bn_b2.bias 192 = 192
module.layer2.3.conv_a1.weight 192 * 192 * 3 * 3 = 331,776
module.layer2.3.bn_a1.weight 192 = 192
module.layer2.3.bn_a1.bias 192 = 192
module.layer2.3.conv_a2.weight 192 * 192 * 3 * 3 = 331,776
module.layer2.3.bn_a2.weight 192 = 192
module.layer2.3.bn_a2.bias 192 = 192
module.layer2.3.conv_b1.weight 192 * 192 * 3 * 3 = 331,776
module.layer2.3.bn_b1.weight 192 = 192
module.layer2.3.bn_b1.bias 192 = 192
module.layer2.3.conv_b2.weight 192 * 192 * 3 * 3 = 331,776
module.layer2.3.bn_b2.weight 192 = 192
module.layer2.3.bn_b2.bias 192 = 192
module.layer3.0.conv_a1.weight 384 * 192 * 3 * 3 = 663,552
module.layer3.0.bn_a1.weight 384 = 384
module.layer3.0.bn_a1.bias 384 = 384
module.layer3.0.conv_a2.weight 384 * 384 * 3 * 3 = 1,327,104
module.layer3.0.bn_a2.weight 384 = 384
module.layer3.0.bn_a2.bias 384 = 384
module.layer3.0.conv_b1.weight 384 * 192 * 3 * 3 = 663,552
module.layer3.0.bn_b1.weight 384 = 384
module.layer3.0.bn_b1.bias 384 = 384
module.layer3.0.conv_b2.weight 384 * 384 * 3 * 3 = 1,327,104
module.layer3.0.bn_b2.weight 384 = 384
module.layer3.0.bn_b2.bias 384 = 384
module.layer3.0.downsample.conv.weight 384 * 192 * 1 * 1 = 73,728
module.layer3.0.downsample.conv.bias 384 = 384
module.layer3.0.downsample.bn.weight 384 = 384
module.layer3.0.downsample.bn.bias 384 = 384
module.layer3.1.conv_a1.weight 384 * 384 * 3 * 3 = 1,327,104
module.layer3.1.bn_a1.weight 384 = 384
module.layer3.1.bn_a1.bias 384 = 384
module.layer3.1.conv_a2.weight 384 * 384 * 3 * 3 = 1,327,104
module.layer3.1.bn_a2.weight 384 = 384
module.layer3.1.bn_a2.bias 384 = 384
module.layer3.1.conv_b1.weight 384 * 384 * 3 * 3 = 1,327,104
module.layer3.1.bn_b1.weight 384 = 384
module.layer3.1.bn_b1.bias 384 = 384
module.layer3.1.conv_b2.weight 384 * 384 * 3 * 3 = 1,327,104
module.layer3.1.bn_b2.weight 384 = 384
module.layer3.1.bn_b2.bias 384 = 384
module.layer3.2.conv_a1.weight 384 * 384 * 3 * 3 = 1,327,104
module.layer3.2.bn_a1.weight 384 = 384
module.layer3.2.bn_a1.bias 384 = 384
module.layer3.2.conv_a2.weight 384 * 384 * 3 * 3 = 1,327,104
module.layer3.2.bn_a2.weight 384 = 384
module.layer3.2.bn_a2.bias 384 = 384
module.layer3.2.conv_b1.weight 384 * 384 * 3 * 3 = 1,327,104
module.layer3.2.bn_b1.weight 384 = 384
module.layer3.2.bn_b1.bias 384 = 384
module.layer3.2.conv_b2.weight 384 * 384 * 3 * 3 = 1,327,104
module.layer3.2.bn_b2.weight 384 = 384
module.layer3.2.bn_b2.bias 384 = 384
module.layer3.3.conv_a1.weight 384 * 384 * 3 * 3 = 1,327,104
module.layer3.3.bn_a1.weight 384 = 384
module.layer3.3.bn_a1.bias 384 = 384
module.layer3.3.conv_a2.weight 384 * 384 * 3 * 3 = 1,327,104
module.layer3.3.bn_a2.weight 384 = 384
module.layer3.3.bn_a2.bias 384 = 384
module.layer3.3.conv_b1.weight 384 * 384 * 3 * 3 = 1,327,104
module.layer3.3.bn_b1.weight 384 = 384
module.layer3.3.bn_b1.bias 384 = 384
module.layer3.3.conv_b2.weight 384 * 384 * 3 * 3 = 1,327,104
module.layer3.3.bn_b2.weight 384 = 384
module.layer3.3.bn_b2.bias 384 = 384
module.fc1.weight 10 * 384 = 3,840
module.fc1.bias 10 = 10
module.fc2.weight 10 * 384 = 3,840
module.fc2.bias 10 = 10
all parameters sum of above = 26,197,316
/home/lts/.conda/envs/PCL/lib/python3.6/site-packages/torch/nn/_reduction.py:49: UserWarning: size_average and reduce args will be deprecated, please use reduction='sum' instead.
warnings.warn(warning.format(ret))
/home/lts/PycharmProject/mean-teacher/pytorch/main.py:224: UserWarning: volatile was removed and now has no effect. Use
with torch.no_grad():
instead.ema_input_var = torch.autograd.Variable(ema_input, volatile=True)
INFO:main:Epoch: [0][0/22000] Time 10.247 (10.247) Data 3.054 (3.054) Class 2.2228 (2.2228) Cons 0.0015 (0.0015) Prec@1 3.000 (3.000) Prec@5 51.000 (51.000)
Traceback (most recent call last):
File "/home/lts/PycharmProject/mean-teacher/pytorch/main.py", line 426, in
main(RunContext(file, 0))
File "/home/lts/PycharmProject/mean-teacher/pytorch/main.py", line 105, in main
train(train_loader, model, ema_model, optimizer, epoch, training_log)
File "/home/lts/PycharmProject/mean-teacher/pytorch/main.py", line 311, in train
**meters.sums()
File "/home/lts/PycharmProject/mean-teacher/pytorch/mean_teacher/run_context.py", line 34, in record
self._record(step, col_val_dict)
File "/home/lts/PycharmProject/mean-teacher/pytorch/mean_teacher/run_context.py", line 45, in _record
self.save()
File "/home/lts/PycharmProject/mean-teacher/pytorch/mean_teacher/run_context.py", line 38, in save
df.to_msgpack(self.log_file_path, compress='zlib')
File "/home/lts/.conda/envs/PCL/lib/python3.6/site-packages/pandas/core/generic.py", line 1320, in to_msgpack
**kwargs)
File "/home/lts/.conda/envs/PCL/lib/python3.6/site-packages/pandas/io/packers.py", line 154, in to_msgpack
writer(fh)
File "/home/lts/.conda/envs/PCL/lib/python3.6/site-packages/pandas/io/packers.py", line 150, in writer
fh.write(pack(a, **kwargs))
File "/home/lts/.conda/envs/PCL/lib/python3.6/site-packages/pandas/io/packers.py", line 691, in pack
use_bin_type=use_bin_type).pack(o)
File "pandas/io/msgpack/_packer.pyx", line 230, in pandas.io.msgpack._packer.Packer.pack (pandas/io/msgpack/_packer.cpp:3642)
File "pandas/io/msgpack/_packer.pyx", line 232, in pandas.io.msgpack._packer.Packer.pack (pandas/io/msgpack/_packer.cpp:3484)
File "pandas/io/msgpack/_packer.pyx", line 191, in pandas.io.msgpack._packer.Packer._pack (pandas/io/msgpack/_packer.cpp:2605)
File "pandas/io/msgpack/_packer.pyx", line 220, in pandas.io.msgpack._packer.Packer._pack (pandas/io/msgpack/_packer.cpp:3178)
File "pandas/io/msgpack/_packer.pyx", line 191, in pandas.io.msgpack._packer.Packer._pack (pandas/io/msgpack/_packer.cpp:2605)
File "pandas/io/msgpack/_packer.pyx", line 220, in pandas.io.msgpack._packer.Packer._pack (pandas/io/msgpack/_packer.cpp:3178)
File "pandas/io/msgpack/_packer.pyx", line 227, in pandas.io.msgpack._packer.Packer._pack (pandas/io/msgpack/_packer.cpp:3348)
TypeError: can't serialize tensor(62, device='cuda:0')
Process finished with exit code 1
The text was updated successfully, but these errors were encountered: