-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpersona.py
173 lines (142 loc) · 6.54 KB
/
persona.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from typing import List
import standard_msg_reader as msg_reader
import re
import tiktoken
import shared_utils as utils
class PersonaEncoder:
chats: dict
selectedChats: dict
def __init__(self):
self.chats = {}
self.selectedChats = {}
self.nonChatModules = {}
self.selectedNonChatModules = {}
def parse_fb_messages(self, filenames, name_id, limit = None) -> None:
"""
Parses Facebook Messages
"""
msgs = msg_reader.get_facebook_messages_from_JSONs(filenames=filenames, limit=limit)
self.chats[name_id] = list(reversed(msgs))
print(f"Messages saved to self.chats['{name_id}']")
def parse_wa_messages(self, filenames, name_id, limit = None) -> None:
"""
Parses WhatsApp Messages
"""
msgs = msg_reader.get_whatsapp_messages_from_JSONs(filenames=filenames, limit=limit)
self.chats[name_id] = list(reversed(msgs))
print(f"Messages saved to self.chats['{name_id}']")
def filter_chats_empty(self):
for nameid, chat in self.chats.items():
filteredChat = []
for msg in chat:
if msg.content == "" or msg.content == None:
continue
filteredChat.append(msg)
self.chats[nameid] = filteredChat
def filter_chats_regex(self, blacklist_re_patterns):
# Instantiate filter log
logs = {}
for filter in blacklist_re_patterns:
logs[filter["id"]] = 0
for nameid, chat in self.chats.items():
filteredChat = []
for msg in chat:
_excludeCurrent = False
for filter in blacklist_re_patterns:
if bool(re.search(filter["pattern"] , msg.content)):
logs[filter["id"]] = logs[filter["id"]] + 1
_excludeCurrent = True
break
if _excludeCurrent: continue
filteredChat.append(msg)
self.chats[nameid] = filteredChat
print("Filtering")
for key,value in logs.items():
print(f"{key}: {value}")
def _strinfigy_chat(chat: List[msg_reader.Message]):
blocks = []
for msg in chat:
block = f"{msg.sender}: {msg.content}"
blocks.append(block)
return "\n".join(blocks)
def select_chat_limited_by_tokens(self, nameid, token_count, start_msg = 0, speed = 1):
chat = self.chats[nameid]
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
finalChat = []
for i, msg in enumerate(chat):
if i % speed == 0:
fullText = PersonaEncoder._strinfigy_chat(finalChat)
num_tokens = len(encoding.encode(fullText))
if num_tokens > token_count:
finalChat = finalChat[:-speed]
break
finalChat.append(msg)
finalTokens = final_tokens = len(encoding.encode(PersonaEncoder._strinfigy_chat(finalChat)))
self.selectedChats[nameid] = finalChat
print(f"Selected chat {nameid} for {final_tokens} ({len(finalChat)} messages)")
def select_chat_full(self, nameid):
finalChat = self.chats[nameid]
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
finalTokens = final_tokens = len(encoding.encode(PersonaEncoder._strinfigy_chat(finalChat)))
self.selectedChats[nameid] = finalChat
print(f"Selected chat {nameid} for {final_tokens} ({len(finalChat)} messages)")
def select_nonChat_module_full(self, nameid):
finalModule = self.nonChatModules[nameid]
self.selectedNonChatModules[nameid] = finalModule
print(f"Selected module {nameid}")
def count_chat_tokens(self, nameid):
finalChat = self.chats[nameid]
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
finalTokens = final_tokens = len(encoding.encode(PersonaEncoder._strinfigy_chat(finalChat)))
print(f"Chat {nameid} has {final_tokens} ({len(finalChat)} messages)")
def count_all_selected_chat_tokens(self):
chat_tokens = {}
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo")
for nameid, chat in self.selectedChats.items():
tokens = len(encoding.encode(PersonaEncoder._strinfigy_chat(chat)))
chat_tokens[nameid] = tokens
return chat_tokens
def output(self) -> str:
finalText = ""
for nameid, chat in self.selectedChats.items():
finalText = finalText + PersonaEncoder._strinfigy_chat(chat)
return finalText
def parse_rosebud_entries(self, filename, name_id):
"""
Parses Rosebud Diaries
"""
with open(filename, 'r', encoding="utf-8") as file:
md_text = file.read()
blocks = []
h2_nested = re.findall(r'(?<!#)##(?!#)\s[\s\S]*?---', md_text)
for h2_n in h2_nested:
block = {}
title = re.findall(r'(?<!#)##(?!#)\s([\s\S]*?)[\n\r]', h2_n)
date = re.findall(r'(?<!#)###(?!#)\s([\s\S]*?)[\n\r]', h2_n)
content = re.findall(r'(?<!#)###(?!#)\s[\s\S]*?[\n\r]([\s\S]*?)---', h2_n)
msgs = re.findall(r'[\s\S]*?(?:\n\n|---)', content[0])
block['title'] = title[0]
block['date'] = date[0]
block['msgs'] = msgs
blocks.append(block)
self.nonChatModules[name_id] = blocks
# Display the results
total_msgs, min_msgs, max_msgs = 0, len(blocks[0]['msgs']), len(blocks[0]['msgs'])
total_tokens, min_tokens, max_tokens = 0, utils.count_tokens(blocks[0]['msgs'][0]), utils.count_tokens(blocks[0]['msgs'][0])
for block in blocks:
block_msgs_count = len(block['msgs'])
total_msgs += block_msgs_count
min_msgs = min(min_msgs, block_msgs_count)
max_msgs = max(max_msgs, block_msgs_count)
for msg in block['msgs']:
tokens_count = utils.count_tokens(msg)
total_tokens += tokens_count
min_tokens = min(min_tokens, tokens_count)
max_tokens = max(max_tokens, tokens_count)
# Calculate averages
average_msgs = total_msgs / len(blocks)
average_tokens = total_tokens / len(blocks)
# Print results
print(f"Read {len(blocks)} rosebud entries.")
print(f"Average messages per block: {round(average_msgs,2)} ({min_msgs} - {max_msgs})")
print(f"Average tokens per block: {round(average_tokens,2)} ({min_tokens} - {max_tokens})")